
This book was tenderly written and illustrated by
why the lucky stiff.

~ Contents ~
About this Book 1

Kon’nichi wa, Ruby 3
1. Opening This Book 4
2. The Dog Story 5
3. The Red Sun Rises 6
4. How Books Start 7

A Quick (and Hopefully Painless) Ride Through Ruby
(with Cartoon Foxes) 9

1. Language and I MEAN Language 10
2. The Parts of Speech 13
3. If I Haven’t Treated You Like a Child Enough Already 22
4. An Example to Help You Grow Up 23
5. And So, the Quick Trip Came to an Eased, Cushioned

Halt 25

Floating Little Leaves of Code 27
1. The Leaf as a Status Symbol in Ambrose 28
2. Small and Nearly Worthless 32
3. Chaining Delusions Together 36
4. The Miracle of Blocks 42

Them What Make the Rules and Them What Live the
Dream 49

1. This One’s For the Disenfranchised 50
2. A Castle Has Its Computers 55
3. The Continued Story of My Daughter’s Organ

Instructor 63
4. The Goat Wants to Watch a Whole Film 73
5. The Theft of the Lottery Captain 85
6. Them What Make the Rules 94
7. Them What Live the Dream 99

Downtown 103
1. If I Were Looking For a Vehicle 104
2. Meanwhile, The Porcupine Stops To Fill-Up 111
3. A Sponsored Dragon-Slaying 111
4. So, Let’s Be Clear: The Porcupine Is Now To The Sea 128
5. Walking, Walking, Walking, Walking and So Forth 128
6. Just Stopping To Assure You That the Porcupine Hasn’t

Budged 146
7. I’m Out 146

When You Wish Upon a Beard 151

 + Expansion Paks +
The Tiger’s Vest (with a Basic Introduction to Irb) . 155

= 3rd Party Modules =
Colophon 163

A Tenuous Index 164

http://whytheluckystiff.net/

Contents ii

Read This Paragraph
At my local Barnes and Noble, there is a huge wall of Java books just waiting to tip over and crush me one

day. And one day it will. At the rate things are going, one day that bookcase will be tall enough to crush us

all. It might even loop the world several times, crushing previous editions of the same Java books over and

over again.

And This Paragraph Too
This is just a small Ruby book. It won’t crush you. It’s light as a feather (because I haven’t finished it yet—

hehe). And there’s a reason this book will stay light: because Ruby is simple to learn.

But Don’t Read This One!
Why’s (Poignant) Guide to Ruby is released under the Attribution-ShareAlike License. So, yes, please

distribute it and print it and read it leisurely in your housecoat. In fact, there will be a contest at the end

of the book for Best Housecoat. It’s a coveted award and you should feel honored to even read about it!

(Especially if you are reading about it in your soon-to-be-prize-winning housecoat.)

Now Back to Your Regularly Scheduled Paragraph
I’ll try not to feel utterly rejected if this book doesn’t capture your fancy. I might experience a few long days

of emptiness, accompanied with profuse weeping, but other than that I’ll be fine. It’s at least comforting to

know that the following fine texts cover my topic and will doubtless fill you with Ruby lust:

• Learning to Program
A very basic, ground-level tutorial for the beginner to Ruby. By Chris Pine.

• Programming Ruby
The original tome and complete reference for Ruby. By Dave Thomas and Andy Hunt (also known as The Pickaxe)

• A Little Ruby, A Lot of Objects
Lovely little in-progress work to teach Ruby purely with simple code examples. By Brian Marick.

• Ruby User’s Guide
A guide to learning Ruby (with code examples). By Matz, the creator of Ruby. Translated into English.

• Ruby Book List
A current list of printed material covering Ruby.

• Ruby-Lang.org
The official home page for the Ruby language.

Now, if you can’t seem to find the contents link on the previous page, then here’s a link to the first page of

the (Poignant) Guide. If you want to venture onto my other projects, go whytheluckystiff.net.

Welcome to the pirate radio of technical manuals.

This work is licensed under a Creative Commons License.

http://creativecommons.org/licenses/by-sa/2.0/
http://pine.fm/LearnToProgram/
http://www.whytheluckystiff.net/ruby/pickaxe/
http://www.visibleworkings.com/little-ruby/
http://www.ruby-doc.org/docs/UsersGuide/rg/
http://wiki.rubygarden.org/Ruby/page/show/RubyBookList
http://www.ruby-lang.org/en/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/

why’s (poignant) guide to ruby

1

1.

About this Book

1. About this Book 2

why’s (poignant) guide to ruby

3

2.

Kon’nichi wa, Ruby

2. Kon’nichi wa Ruby 4

1. Opening This Book
Pretend that you’ve opened this book (although you

probably have opened this book), just to find a huge

onion right in the middle crease of the book. (The

manufacturer of the book has included the onion at

my request.)

So you’re like, “Wow, this book comes with an

onion!” (Even if you don’t particularly like onions,

I’m sure you can appreciate the logistics of shipping

any sort of produce discreetly inside of an alleged

programming manual.)

Then you ask yourself, “Wait a minute. I thought

this was a book on Ruby, the incredible new

programming language from Japan. And although

I can appreciate the logistics of shipping any sort of

produce discreetly inside of an alleged programming

manual: Why an onion? What am I supposed to do

with it?”

No. Please don’t puzzle over it. You don’t need to

do anything with the onion. Set the onion aside and

let it do something with you.

I’ll be straight with you. I want you to cry. To weep.

To whimper sweetly. This book is a poignant guide

to Ruby. That means code so beautiful that tears

are shed. That means gallant tales and somber

truths that have you waking up the next morning in

the arms of this book. Hugging it tightly to you all

the day long. If necessary, fashion a makeshift hip

holster for Why’s (Poignant) Guide to Ruby, so you

can always have this book’s tender companionship.

You really must sob once. Or at least sniffle. And if

not, then the onion will make it all happen for you.

sidebar!

What I’m Going to Do With the

Massive Proceeds from this Book

Anyone who’s written a book can tell you how easily an author

is distracted by visions of grandeur. In my experience, I stop

twice for each paragraph, and four times for each panel of

a comic, just to envision the wealth and prosperity that this

book will procure for my lifestyle. I fear that the writing of

this book will halt altogether to make way for the armada of

SUVs and luxury towne cars that are blazing away in my head.

Rather than stop my production of the (Poignant) Guide, I’ve

reserved this space as a safety zone for pouring my empty and

vain wishes.

Today I was at this Italian restaraunt, Granado’s, and I was

paying my bill. Happened to notice (under glass) a bottle of

balsamic vinegar going for $150. Fairly small. I could conceal

it in my palm. Aged twenty-two years.

I’ve spent a lot of time thinking about that bottle. It is often

an accessory in some of these obsessive fantasies. In one

fantasy, I walk into the restaraunt, toss a stack of greenery on

the counter and earnestly say to the cashier, “Quick! I have an

important salad to make!”

In another, related fantasy, I am throwing away lettuce. Such

roughage isn’t befitting of my new vinegar. No, I will have

come to a point where the fame and the aristocracy will have

corrupted me to my core. My new lettuce will be cash. Cold,

hard cash, Mrs. Price.

Soon, I will be expending hundreds for a block of myzithra

cheese.

(continues over)

why’s (poignant) guide to ruby

5

2. The Dog Story
So try this first bit of poignancy on for size:

One day I was walking down one of those busy

roads covered with car dealerships (this was shortly

after my wedding was called off) and I found an

orphaned dog on the road. A wooly, black dog with

greenish red eyes. I was kind of feeling like an

orphan myself, so I took a couple balloons that were

tied to a pole at the dealership and I relocated them

to the dog’s collar. Then, I decided he would be my

dog. I named him Bigelow.

We set off to get some Milkbones for Bigelow and,

afterwards, head over to my place, where we could

sit in recliners and listen to Gorky’s Zygotic Mynci.

Oh, and we’d also need to stop by a thrift store and

get Bigelow his own recliner.

But Bigelow hadn’t accepted me as his master. So

five minutes later, the stupid dog took a different

crosswalk than I did and I never caught up. So

whereas he had previously only been lost once, he

was now lost twice. I slowed my pace towards the

life of Milkbones and an extra recliner. I had a dog

for five minutes.

Stupid Benedict Arnold of a dog. I sat on a city

bench and threw pinecones at a statue of three

sheep crossing a bridge. After that, I wept for

hours. The tears just came. Now there’s a little

something poignant to get you started.

I wonder where he went with all those balloons.

That crazy dog must have looked like a party with

legs.

It wasn’t much later that I pulled my own Bigelow.

I printed out a bunch of pages on Ruby. Articles

found around the Web. I scanned through them on

a train ride home one day. I flipped through them

for five minutes and then gave up. Not impressed.

(continued)

My imaginations have now gone beyond posessions, though.

Certainly, I have thought through my acquisition of grecian

urns, motorcades, airlines, pyramids, dinosaur bones.

Occassionally I’ll see wind-tossed cities on the news and I’ll jot

down on my shopping list: Hurricane.

But, now I’m seeing a larger goal. Simply put: what if I

amassed such a fortune that the mints couldn’t print enough

to keep up with my demand? So, everyone else would be

forced to use Monopoly money as actual currency. And you

would have to win in Monopoly to keep food on the table.

These would be some seriously tense games. I mean you

go to mortgage St. James Place and your kids start crying.

In addition, I think you’ll begin to see the end of those who

choose to use the Free Parking square as the underground

coffers for city funds.

You’ve got to hand it to fun money, though. Fake money

rules. You can get your hands on it so quickly. For a moment,

it seems like you’re crazy rich. When I was a kid, I got with

some of the neighborhood kids and we built this little Tijuana

on our street. We made our own pesos and wore sombreros

and everything!

One kid was selling hot tamales for two pesos each. Two

pesos! Did this kid know that the money was fake? Was he

out of his mind? Who invited this kid? Didn’t he know this

wasn’t really Tijuana? Maybe he was really from Tijuana!

Maybe these were real pesos! Let’s go make more real pesos!

I think we even had a tavern where you could get totally

hammered off Kool-Aid. There’s nothing like a bunch of kids

stumbling around, mumbling incoherently with punchy red

clown lips.

sidebar!

http://regexlib.com/DisplayPatterns.aspx
http://regexlib.com/DisplayPatterns.aspx

2. Kon’nichi wa Ruby 6

I sat, staring out the window at the world, a life-sized blender mixing graffiti and iron smelts before my

eyes. This world’s too big for such a a little language, I thought. Poor little thing doesn’t stand a chance.

Doesn’t have legs to stand on. Doesn’t have arms to swim.

And yet, there I was. One little man on a flimsy little train (and I even still had a baby tooth to lose at the

time) out of billions of people living on a floating blue rock. How can I knock Ruby? Who’s to say that I’m

not going to happen to choke on my cell phone and die later that evening. Why’s dead, Ruby lives on.

The gravestone:

What’s in his trachea?
Oh, look, a Nokia!

Just my luck. Finally get to have a good, long sleep underground, only to be constantly disturbed by

Pachelbel’s Canon going off in my stomach.

3. The Red Sun Rises
So, now you’re wondering why I changed my mind about Ruby. The quick answer is: we clicked.

Like when you meet Somebody in college and they look like somebody who used to hit you in the face with

paintbrushes when you were a kid. And so, impulsively, you conclude that this new Somebody is likely a

non-friend. You wince at their hair. You hang up phones loudly during crucial moments in their anecdotes.

You use your pogo stick right there where they are trying to walk!

Six months later, somehow, you and Somebody are sitting at a fountain having a perfectly good chat. Their

face doesn’t look so much like that childhood nemesis. You’ve met the Good Twin. You clicked.

So whereas I should probably be pounding your teeth in with hype about Ruby and the tightly-knit cadre

of pertinent ancronyms that accompany it everywhere (whetting the collective whistles of your bosses and

their bosses’ bosses), instead I will just let you coast. I’ll let you freefall through some code, interjecting

occassionally with my own heartfelt experiences. It’ll be quite easy, quite natural.

I should offer you some sort of motivation, though. So, Smotchkkiss, I’m going to give my three best

reasons to learn Ruby and be done with it.

1 Brain health. Vitamin R. Goes straight to the head. Ruby will teach you to express your ideas through a
computer. You will be writing stories for a machine.

Creative skills, people. Deduction. Reason. Nodding intelligently. The language will become a tool for you to
better connect your mind to the world. I’ve noticed that many experienced users of Ruby seem to be clear thinkers
and objective. (In contrast to: heavily biased and coarse.)

2 One man on one island. Ruby was born in Japan. Which is freaky. Japan is not known for its software. And
since programming languages are largely written in English, who would suspect a language to come from Japan?

And yet, here we have Ruby. Against the odds, Yukihiro Matsumoto created Ruby on February 24, 1993. For the
past ten years, he has steadily brought Ruby to a global audience. It’s triumphant and noble and all that. Support
diversity. Help us tilt the earth just a bit.

why’s (poignant) guide to ruby

7

3 Free. Using Ruby costs nothing. The code to Ruby itself is open for all of the world to inhale/exhale. Heck, this
book is free. It’s all part of a great, big giveaway that should have some big hitch to it.

You’d think we’d make you buy vacuums or timeshare or fake Monets. You’d think there’d be a 90 minute
presentation where the owner of the company comes out at the end and knuckles you into sealing the deal.

Nope, free.

With that, it’s time for the book to begin. You can now get out your highlighter and start dragging it along

each captivating word from this sentence on. I think I have enough hairspray and funny money on my

person to keep me sustained until the final page.

4. How Books Start
Now, if you ever have read a book, you know that no book can properly start without an exorbitant amount

of synergy. Yes, synergy. Maybe you didn’t know this. Synergy means that you and I are supposed to

cooperate to make this a great reading experience.

We start off the book by getting along well in the Introduction. This togetherness, this synergy, propels

us through the book, with me guiding you on your way. You give me a reassuring nod or snicker to indicate

your progress.

I’m Peter Pan holding your hand. Come on, Wendy! Second star to the right and on till morning.

One problem here. I don’t get along well with people. I don’t hold hands very well.

Any of my staff will tell you. At the Opening Ceremonies of This Book (a catered event with stadium

seating), I discovered that the cucumber sandwiches weren’t served in tea towels. As a result, the butter

hadn’t set with the cucumbers right… Anyways, I made a big scene and set fire to some of the advertising

trucks outside. I smashed this spotlight to pieces and so on. I had this loud maniacal laughing thing going

on deep into that night. It was a real mess.

But, since I don’t get along well with people, I hadn’t invited anyone but myself to the Opening Ceremonies

of This Book. So it wasn’t really that embarassing. I kept it under wraps and no one found out about the

whole ordeal.

So you’ve got to know that synergy doesn’t actually mean synergy in this book. I can’t do normal

synergy. No, in this book, synergy means cartoon foxes. What I’m saying is: this book will be starting

off with an exorbitant amount of cartoon foxes.

And I will be counting on you to turn them into synergy.

2. Kon’nichi wa Ruby 8

Don’t Panic!

This page is as blank

as nature intended.

why’s (poignant) guide to ruby

9

3.

A Quick (and Hopefully Painless) Ride
Through Ruby (with Cartoon Foxes)

3. A Quick Ride Through Ruby 10

Yeah, these are the two. My asthma’s kickin in so I’ve got to go take a puff of medicated air just now. Be

with you in a moment.

I’m told that this chapter is best accompanied by a rag. Something you can mop your face with as the sweat

pours off your face.

Indeed, we’ll be racing through the whole language. Like striking every match in a box as quickly as can be

done.

1. Language and I MEAN Language

My conscience won’t let me call Ruby a computer language. That would imply that the language works

primarily on the computer’s terms. That the language is designed to accommodate the computer, first and

foremost. That therefore, we, the coders, are foreigners, seeking citizenship in the computer’s locale. It’s

why’s (poignant) guide to ruby

11

the computer’s language and we are translators for the world.

But what do you call the language when your brain begins to think in that language? When you start to use

the language’s own words and colloquialisms to express yourself—Say, the computer can’t do that. How can

it be the computer’s language? It is ours, we speak it natively!

We can no longer truthfully call it a computer language. It is coderspeak. It is the language of our

thoughts.

Read the following aloud to yourself.

5.times { print “Odelay!” }

In English sentences, punctuation (such as periods, exclamations, parentheses) are silent. Punctuation

adds meaning to words, helps give cues as to what the author intended by a sentence. So let’s read the

above as: Five times print “Odelay!”.

Which is exactly what this small Ruby program does. Beck’s mutated Spanish exclamation will print five

times on the computer screen.

Read the following aloud to yourself.

exit unless “restaurant”.include? “aura”

Here we’re doing a basic reality check. Our program will exit (the program will end) unless the word

restaurant contains (or includes) the word aura. Again, in English: Exit unless the word restaurant

includes the word aura.

Ever seen a programming language use question marks so effectively? Ruby uses some punctuation, such

as exclamations and question marks, to enhance readability of the code. We’re asking a question in the

above code, so why not make that apparent?

Read the following aloud to yourself.

[‘toast’, ‘cheese’, ‘wine’].each { |food| print food.capitalize }

While this bit of code is less readable and sentence-like than the previous examples, I’d still encourage you

to read it aloud. Although Ruby may sometimes read like English, it sometimes reads as a shorter English.

You might read the above, fully translated into English, as: With the words ‘toast’, ‘cheese’, and ‘wine’: take

each food and print it capitalized.

The computer then courteously responds: Toast, Cheese and Wine.

At this point, you’re probably wondering how these words actually fit together. Smotchkkiss is wondering

what the dots and brackets mean. I’m going to discuss the various parts of speech next.

All you need to know thus far is that Ruby is basically built from sentences. They aren’t exactly English

sentences. They are short collections of words and punctuation that encompass a single thought. These

sentences can form books. They can form pages. They can form entire novels, when strung together.

Novels that can be read by humans, but also by computers.

http://www.whiskeyclone.net/ghost/songinfo.php?songID=175

3. A Quick Ride Through Ruby 12

sidebar!

Concerning Commercial Uses of
the (Poignant) Guide
This book is released under a Creative Commons license that

allows unlimited commercial use of this text. Basically, this

means you can sell all these bootleg copies of my book and

keep the revenues for yourself. I trust my readers (and the

world around them) to rip me off. To put out some crappy

Xerox edition with that time-tested clipart of praying hands on

the cover.

Guys, the lawsuits just ain’t worth the headache. So I’m

just going to straight-up endorse authorized piracy, folks.

Anybody who wants to read the book should be able to read

it. Anybody who wants to market the book or come up with

special editions, I’m flattered.

Why would I want the $$$? IGNORE ALL OTHER

SIDEBARS: I’ve lost the will to be a rich slob. Sounds

inhuman, but I like my little black-and-white television. Also

my hanging plastic flower lamp. I don’t want to be a career

writer. Cash isn’t going inspire me. Pointless.

So, if money means nothing to the lucky stiff, why rip me off

when you could co-opt shady business practices to literally

crush my psyche and leave me wheezing in some sooty iron

lung? Oh, and the irony of using my own works against me!

Die, Poignant Boy!

To give you an idea of what I mean, here are a few

underhanded concepts that could seriously kill my willpower

and force me to reconsider things like existence.

IDEA ONE: BIG TOBACCO

Buy a cigarette company. Use my cartoon foxes to fuel an

aggressive ad campaign. Here’s a billboard for starters:

Make it obvious that you’re targeting children and the

asthmatic. Then, once you’ve got everyone going, have the

truth people do an expose on me and my farm of inky foxes.

Sensible Hipster Standing on Curb in Urban
Wilderness: He calls himself the lucky stiff.

(Pulls aside curtain to reveal gray corpse on a gurney.)

Hipster: Some stiffs ain’t so lucky.

(Erratic zoom-in. Superimposed cartoon foxes for
subliminal Willy Wonka mind trip.)

Yo. Why you gotta dis Big Smokies like dat, Holmes?

IDEA TWO: HEY, FIRING SQUAD

Like I said, start selling copies of my book, but corrupt the
text. These altered copies would contain numerous blatant
(and libelous) references to government agencies, such as the
U.S. Marshals and the Pentagon. You could make me look like
a complete traitor. Like I have all these plans to, you know,
kill certain less desirable members of the U.S. Marshals or the
Pentagon.

Not that there are any less desirable members of the U.S.
Marshals or the Pentagon. Yeah, I didn’t mean it like that.

Oh, crap.

Oh, crap. Oh, crap. Oh, crap.

Turn off the lights. Get down.

IDEA THREE: BILLBOARDS, PART II

How about making fun of asthmatics directly?

IDEA FOUR: ALEC BALDWIN

Adapt the book into a movie. And since, you know, I’m a
character in this book, you could get someone like Alec
Baldwin to play me. Someone who’s at a real low point in his
career.

You could make it seem like I did tons of drugs. Like I was
insane to work with. Like I kept firing people and locking them
in the scooter room and making them wear outfits made of
bread. Yeah, like I could actually be baking people into the
outfits.

You could have this huge mold that I strap people into. Then,
I pour all the dough on them and actually bake them until the
bread has risen and they’ve almost died.

(continues over)

why’s (poignant) guide to ruby

13

2. The Parts of Speech
Just like the white stripe down a skunk’s back and the winding, white train of a bride, many of Ruby’s parts

of speech have visual cues to help you identify them. Punctuation and capitalization will help your brain

to see bits of code and feel intense recognition. Your mind will frequently yell Hey, I know that guy! You’ll

also be able to name-drop in conversations with other Rubyists.

Try to focus on the look of each of these parts of speech. The rest of the book will detail the specifics. I give

short descriptions for each part of speech, but you don’t have to understand the explanation. By the end of

this chapter, you should be able to recognize every part of a Ruby program.

Variables
Any plain, lowercase word is a variable in ruby. Variables may consist of letters, digits and underscores.

x, y, banana2, or phone_a_quail are examples.

Variables are like nicknames. Remember when everyone used to call you Stinky Pete? People would say,

“Get over here, Stinky Pete!” And everyone miraculously knew that Stinky Pete was you.

With variables, you give a nickname to something you use frequently. For instance, let’s say you run an

orphanage. It’s a mean orphanage. And whenever Daddy Warbucks comes to buy more kids, we insist that

he pay us one-hundred twenty-one dollars and eight cents for the kid’s teddy bear, which the kid has

become attached to over in the darker moments of living in such nightmarish custody.

teddy_bear_fee = 121.08

Later, when you ring him up at the cash register (a really souped-up cash register which runs Ruby!), you’ll

need to add together all his charges into a total.

total = orphan_fee + teddy_bear_fee + gratuity

Those variable nicknames sure help. And in the seedy underground of child sales, any help is appreciated

I’m sure.

(continued)

And when the television crews come and I’m on “Good
Morning America”, they’ll ask, “So, how many people have you
employed in the production of your book?” And I’d respond,
“A baker’s dozen!” and erupt into that loud maniacal laughing
that would force audience members to cup their hands over
their ears.

Of course, in the throes of my insanity, I would declare war on
the world. The bread people would put up quite a fight. Until
the U.S. Marshals (or the Pentagon) engineer a giant robotic
monkey brain (played by Burt Lancaster) to come after me.

Here’s where you’ll make me look completely lame. Not only
will I sacrifice all of the bread people (the Starchtroopers)
to save myself, not only will I surrender to the great monkey

brain like a coward, but when I narrowly escape, I’ll yell at the

audience. Screaming insistently that it’s MY movie and no one

should see it any more, I’ll rip the screen in half and the film

projector will spin with its reel flapping in defeat. And that

will be the end of the movie. People will be so pissed.

Now, I’ve got to thinking. See, and actually, Alec Baldwin

did a decent voiceover in The Royal Tenenbaums. His career

might be okay. You might not want to use him. He might not

do it.

Tell ya what. I’ll play the part. I’ve made a career out of low

points.

sidebar!

3. A Quick Ride Through Ruby 14

Numbers
The most basic type of number is an integer, a series of digits that can start with a plus or minus sign.

1, 23, and -10000 are examples.

Commas are not allowed in numbers, but underscores are. So if you feel the need to mark your thousands

so the numbers are more readable, use an underscore.

population = 12_000_000_000

Decimal numbers are called floats in Ruby. Floats consist of numbers with a decimal place or scientific

notation.

3.14, -808.08 and 12.043e-04 are examples.

Strings
Strings are any sort of characters (letters, digits, punctuation) surrounded by quotes. Both single and

double quotes are used to create strings.

“sealab”, ‘2021’, or “These cartoons are hilarious!” are examples.

When you enclose characters in quotes, they are stored together as a single string.

Think of a reporter who is jotting down the mouthnoises of a rambling celebrity. “I’m a lot wiser,” says

Avril Lavigne. “Now I know what the business is like—what you have to do and how to work it.”
 avril_quote = “I’m a lot wiser. Now I know
 what the business is like -- what you have
 to do and how to work it.”

So, just as we stored a number in the teddy_bear_fee variable, now we’re storing a collection of

characters (a string) in the avril_quote variable. The reporter sends this quote to the printers, who just

happen to use Ruby to operate their printing press.
 print oprah_quote

 print avril_quote
 print ashlee_simpson_debacle

why’s (poignant) guide to ruby

15

Symbols
Symbols are words that look just like variables. Again, they may contain letters, digits, or underscores. But

they start with a colon.

:a, :b, or :ponce_de_leon are examples.

Symbols are lightweight strings. Usually, symbols are used in situations where you need a string but you

won’t be printing it to the screen.

You could say a symbol is a bit easier on the computer. It’s like an antacid. The colon indicates the bubbles

trickling up from your computer’s stomach as it digests the symbol. Ah. Sweet, sweet relief.

Constants
Constants are words like variables, but constants are capitalized. If variables are the nouns of Ruby, then

think of constants as the proper nouns.

Time, Array or Bunny_Lake_is_Missing are examples.

In English, proper nouns are capitalized. The Empire State Building. You can’t just move the Empire State

Building. You can’t just decide that the Empire State Building is something else. Proper nouns are like that.

They refer to something very specific and usually don’t change over time.

In the same way, constants can’t be changed after they are set.

EmpireStateBuilding = “350 5th Avenue, NYC, NY”

If we try to change the constant, Ruby will complain to us. Such things are frowned upon.

3. A Quick Ride Through Ruby 16

Methods
If variables and constants are the nouns, then methods are the verbs. Methods are usually attached to the

end of variables and constants by a dot. You’ve already seen methods at work.

front_door.open

In the above, open is the method. It is the action, the verb. In some cases, you’ll see actions chained

together.

front_door.open.close

We’ve instructed the computer to open the front door and then immediately close it.

front_door.is_open?

The above is an action as well. We’re instructing the computer to test the door to see if it’s open. The

method could be called Door.test_to_see_if_its_open, but the is_open? name is succinct and just as

correct. Both exclamation marks and question marks may be used in method names.

Method Arguments
A method may require more information in order to perform its action. If we want the computer to paint

the door, we should provide a color as well.

Method arguments are attached to the end of a method. The arguments are usually surrounded by

parentheses and separated by commas.

front_door.paint(3, :red)

The above paints the front door three coats of red.

Think of it as an inner tube the method is pulling along, containing its extra instructions. The parentheses

form the wet, round edges of the inner tube. The commas are the feet of each argument, sticking over the

edge. The last argument has its feet tucked under so they don’t show.

Like a boat pulling many inner tubes, methods with arguments can be chained.

front_door.paint(3, :red).dry(30).close()

The above paints the front door three coats of red, dries for 30 minutes, and closes the door. Even though

why’s (poignant) guide to ruby

17

the last method has no arguments, you can still use parentheses if you like. There is no use dragging an

empty inner tube, so the parentheses are normally dropped.

Some methods (such as print) are kernel methods. These methods are used throughout Ruby. Since they

are so common, you won’t use the dot.

print “See, no dot.”

Class Methods
Like the methods described above (also called instance methods), class methods are usually attached after

variables and constants. Rather than a dot, a double colon is used.

Door::new(:oak)

As seen here, the new class method is most often used to create things. In the above example, we’re asking

Ruby to make a new oak door for us. Of course, Ruby has to have an understanding of how to make a

door—as well as a wealth of timber, lumberjacks, and those long, wiggily, two-man saws.

Global Variables
Variables which begin with a dollar sign are global.

$x, $1, $chunky and $CHunKY_bACOn are examples.

Most variables are rather temporary in nature. Some parts of your program are like little houses. You walk

in and they have their own variables. In one house, you may have a dad that represents Archie, a travelling

salesman and skeleton collector. In another house, dad could represent Peter, a lion tamer with a great love

for flannel. Each house has its own meaning for dad.

With global variables, you can be guaranteed that the variable is the same in every little house. The dollar

sign is very appropriate. Every American home respects the value of the dollar. We’re crazy for the stuff.

Try knocking on any door in America and hand them cash. I can guarantee you won’t get the same reaction

if you knock on a door and offer up Peter, a lion tamer with a great love for flannel.

Global variables can be used anywhere in your program. They never go out of sight.

3. A Quick Ride Through Ruby 18

Instance Variables
Variables that begin with an at symbol are instance variables.

@x, @y, and @only_the_chunkiest_cut_of_bacon_i_have_ever_seen are examples.

These variables are often used to define the attributes of something. For example, you might provide Ruby

with the width of the front_door by setting the @WIDTH variable inside that front_door. Instance variables

are used to define characteristics of a single object in Ruby.

Think of the at symbol as meaning attribute.

Class variables
Variables that begin with double at symbols are class variables.

@@x, @@y, and @@i_will_take_your_chunky_bacon_and_raise_you_two are examples.

Class variables, too, are used to define attributes. But rather than defining an attribute for a single object in

Ruby, class variables give an attribute to many related objects in Ruby. If instance variables set attributes

for a single front_door, then class variables set attributes for everything that is a Door.

Think of the double at prefix as meaning attribute all. Additionally, you can think of a swarm of AT-

ATs from Star Wars, which are all commanded by Ruby. You change a class variable and not just one

changes, they all change.

Blocks
Any code surrounded by curly braces is a block.

2.times { print “Yes, I’ve used chunky bacon in my examples, but never again!” } is an example.

With blocks, you can group a set of instructions together so that they can be passed around your program.

The curly braces give the appearance of crab pincers that have snatched the code and are holding it

together. When you see these two pincers, remember that the code inside has been pressed into a single

unit.

It’s like one of those little Hello Kitty boxes they sell at the mall that’s stuffed with tiny pencils and

microscopic paper, all crammed into a glittery transparent case that can be concealed in your palm for

why’s (poignant) guide to ruby

19

covert stationary operations. Except that blocks don’t require so much squinting.

The curly braces can also be traded for the words do and end, which is nice if your block is longer than one

line.
 loop do
 print “Much better.”
 print “Ah. More space!”
 print “My back was killin’ me in those crab pincers.”
 end

Block Arguments
Block arguments are a set of variables surrounded by pipe characters and separated by commas.

|x|, |x,y|, and |up, down, all_around| are examples.

Block arguments are used at the beginning of a block.

{ |x,y| x + y }

In the above example, |x,y| are the arguments. After the arguments, we have a bit of code. The expression

x + y adds the two arguments together.

I like to think of the pipe characters as representing a tunnel. They give the appearance of a chute that the

variables are sliding down. (An x goes down spread eagle, while the y neatly crosses her legs.) This chute

acts as a passageway between blocks and the world around them.

Variables are passed through this chute (or tunnel) into the block.

Ranges
A range is two values surrounded by parentheses and separated by an ellipsis (in the form of two or

three dots).

(1..3) is a range, representing the numbers 1 through 3.

(‘a’..’z’) is a range, representing a lowercase alphabet.

Think of it as an accordion that has been squeezed down for carrying. (Sure, you can build a great sense

of self-worth by carrying around an unfolded accordion, but sometimes a person needs to wallow in self-

doubt, carefully concealing the squeeze-box.) The parentheses are the handles on the sides of a smaller,

handheld accordion. The dots are the chain, keeping the folds tightly closed.

3. A Quick Ride Through Ruby 20

Normally, only two dots are used. If a third dot is used, the last value in the range is excluded.

(0...5) represents the numbers 0 through 4.

When you see that third dot, imagine opening the accordion slightly. Just enough to let one note from its

chamber. The note is that end value. We’ll let the sky eat it.

Arrays
An array is a list surrounded by square brackets and separated by commas.

[1, 2, 3] is an array of numbers.

[‘coat’, ‘mittens’, ‘snowboard’] is an array of strings.

Think of it as a caterpillar that has been stapled into your code. The two square brackets are staples which

keep the caterpillar from moving, so you can keep track of that end is the head and which is the tail. The

commas are the caterpillar’s legs, wiggling between each section of its body.

Once there was a caterpillar who had commas for legs. Which meant he had to allow a literary pause after

each step. The other caterpillars really respected him for it and he came to have quite a commanding

presence. Oh, and talk about a philanthropist! He was notorious for giving fresh leaves to those less-

fortunate.

Yes, an array is a collection of things, but it also keeps those things in a specific order.

Hashes
A hash is a dictionary surrounded by curly braces. Dictionaries match words with their definitions. Ruby

does so with arrows made from an equals sign, followed by a greater-than sign.

{‘a’ => ‘aardvark’, ‘b’ => ‘badger’} is an example.

This time, the curly braces represent little book symbols. See how they look like little, open books with

creases down the middle? They represent opening and closing our dictionary.

Imagine our dictionary has a definition on each of its pages. The commas represent the corner of each page,

which we turn to see the next definition. And on each page: a word followed by an arrow pointing to the

definition.
 {

 ‘name’ => ‘Peter’,
 ‘profession’ => ‘lion tamer’,

 ‘great love’ => ‘flannel’
 }

I’m not comparing hashes to dictionaries because you can only store definitions in a hash. In the example

above, I stored personal information for Peter, the lion tamer with a great love for flannel. Hashes are like

dictionaries because they can be very easy to search through.

Unlike arrays, the items in a hash are not kept in a specific order.

why’s (poignant) guide to ruby

21

Regular Expressions
A regular expression (or regexp) is a set of characters surrounded by slashes.

/ruby/, /[0-9]+/ and /^\d{3}-\d{3}-\d{4}/ are examples.

Regular expressions are used to find words or patterns in text. The slashes on each side of the expression

are pins.

Imagine if you had a little word with pins on both side and you held it over a book. You pass the word over

the book and when it gets near a matching word, it starts blinking. You pin the regular expression onto the

book, right over the match and it glows with the letters of the matching word.

Oh, and when you poke the pins into the book, the paper sneezes, reg-exp!

Regular expressions are much faster than passing your hand over pages of a book. Ruby can use a regular

expression to search volumes of books very quickly.

Operators
You’ll use the following list of operators to do math in Ruby or to compare things. Scan over the list,

recognize a few. You know, addition + and subtraction - and so on.
 ** ! ~ * / % + - &
 << >> | ^ > >= < <= <=>
 || != =~ !~ && += -= == ===
 not and or

Keywords
Ruby has a number of built-in words, imbued with meaning. These words cannot be used as variables

or changed to suit your purposes. Some of these we’ve already discussed. They are in the safe house, my

friend. You touch these and you’ll be served an official syntax error.
 alias and BEGIN begin break case class def defined
 do else elsif END end ensure false for if
 in module next nil not or redo rescue retry
 return self super then true undef unless until when
 while yield

Good enough. These are the illustrious members of the Ruby language. We’ll be having quite the junket for

the next three chapters, gluing these parts together into sly bits of (poignant) code.

3. A Quick Ride Through Ruby 22

I’d recommend skimming all of the parts of speech once again. Give yourself a broad view of them. I’ll be

testing your mettle in the next section.

3. If I Haven’t Treated You Like a Child Enough Already
I’m proud of you. Anyone will tell you how much I brag about you. How I go on and on about this great

anonymous person out there who scrolls and reads and scrolls and reads. “These kids,” I tell them. “Man,

these kids got heart. I never…” And I can’t even finish a sentence because I’m absolutely blubbering.

And my heart glows bright red under my filmy, translucent skin and they have to administer 10cc of

JavaScript to get me to come back. (I respond well to toxins in the blood.) Man, that stuff will kick the

peaches right out your gills!

So, yes. You’ve kept up nicely. But now I must begin to be a brutal schoolmaster. I need to start seeing

good marks from you. So far, you’ve done nothing but move your eyes around a lot. Okay, sure, you did

some exceptional reading aloud earlier. Now we need some comprehension skills here, Smotchkkiss.

Say aloud each of the parts of speech used below.

5.times { print “Odelay!” }

You might want to even cover this paragraph up while you read, because your eyes might want to sneak to

the answer. We have a number 5, followed by a method .times. Then, the first crab pincers of a block. The

kernel method print has no dot and is followed by a string “Odelay!”. The final crab pincers close our block.

Say aloud each of the parts of speech used below.

exit unless “restaurant”.include? “aura”

Like the print method, exit is a kernel method. If you were paying attention during the big list of keywords,

you’ll know that unless is just such a keyword. The string “restaurant” is clung to by the method include?.

And finally, the string “aura”.

Say aloud each of the parts of speech used below.

[‘toast’, ‘cheese’, ‘wine’].
each { |food| print(food.capitalize) }

This caterpillar partakes of finer delicacies. An array starts this example. In the array, three strings ‘toast’,

why’s (poignant) guide to ruby

23

‘cheese’, and ‘wine’. The whole array is trailed by a method each.

Inside of a block, the block argument food, travelling down its little waterslide into the block. The method

capitalize then capitalizes the first letter of the block argument, which has become the variable food. This

capitalized string is passed to kernel method print.

Look over these examples once again. Be sure you recognize the parts of speech used. They each have a

distinct look, don’t they? Take a deep breath, press firmly on your temples. Now, let’s dissect a cow’s eye

worth of code.

4. An Example to Help You Grow Up

Say aloud each of the parts of speech used below.
 require ‘net/http’
 Net::HTTP.start(‘www.ruby-lang.org’, 80) do |http|

 print(http.get(‘/en/LICENSE.txt’).body)

 end

The first line is a method call. The method called require is used. A string is passed to the method

containing ‘net/http’. Think of this first line of code as a sentence. We have told Ruby to load some helper

code, the Net::HTTP library.

The next three lines all go together. The constant Net::HTTP refers to the library we loaded above. We are

using the method start from the library. Into the method, we’re sending a string ‘www.ruby-lang.org’ and

the number 80.

The word do opens a block. The block has one block variable http. Inside the block, the method print is

called. What is being printed?

From the variable http, the method get is called. Into get, we pass a string containing the path ‘/en/

LICENSE.txt’. Now, notice that another method is chained onto get. The method body. Then, the block

closes with end.

Doing okay? Just out of curiousity, can you guess what this example does? Hopefully, you’re seeing some

patterns in Ruby. If not, just shake your head vigorously while you’ve got these examples in your mind.

The code should break apart into manageable pieces.

3. A Quick Ride Through Ruby 24

For example, this pattern is used a number of times:

variable . method (method arguments)

You see it inside the block:

http.get(‘/en/LICENSE.txt’)

We’re using Ruby to get a web page. You’ve

probably used HTTP with your web browser.

HTTP is the Hypertext Transfer Protocol. HTTP

is used to transfer web pages across the Internet.

Conceptualize a bus driver who can drive across the

Internet and bring back web pages for us. On his hat

are stitched the letters HTTP.

The variable http is that bus driver. The method is

a message to the bus driver. Go get the web page

called /en/LICENSE.txt.

So where you see the chain of methods:

http.get(‘/en/LICENSE.txt’).body

Since we’ll be getting back a web page from the http

bus driver, you can read this in your brain as:

web page .body

And this bit of code:

print(http.get(‘/en/LICENSE.txt’).body)

This code gets the web page. We send a body

message to the web page, which gives us all the

HTML in a string. We then print that string. See

how the basic dot-method pattern happens in a

chain. The next chapter will explore all these sorts

of patterns in Ruby. It’ll be good fun.

So, what does this code do? It prints the HTML for

the Ruby home page to the screen. Using an web-

enabled bus driver.

sidebar!

Seven Moments of Zen from My

Life
• 8 years old. Just laying in bed, thinking. And I realize.

There’s nothing stopping me from becoming a child

dentist.

• 21. Found a pencil on the beach. Embossed on it: I

cherish serenity. Tucked it away into the inside breast

pocket of my suit jacket. Watched the waves come and

recede.

• 22. Found a beetle in my bathroom that was just about

to fall into a heating vent. Swiped him up. Tailored him a

little backpack out of a leaf and a thread. In the backpack:

a Skittle and AAA battery. That should last him. Set him

loose out by the front gate.

• Three years of age. Brushed aside the curtain. Sunlight.

• 14. Riding my bike out on the pier with my coach who

is jogging behind me as the sun goes down right after

I knocked out Piston Honda in the original Nintendo

version of Mike Tyson’s Punch-Out.

• 11. Sick. Watching Heathcliff on television. For hours, it

was Heathcliff. And he was able to come right up close to

my face. His head spun toward me. His face pulsed back

and forth, up close, then off millions of miles away. Sound

was gone. In fractions of a second, Heathcliff filled the

universe, then blipped off to the end of infinity. I heard

my mother’s voice trying to cut through the cartoon.

Heathclose, Heathaway, Heathclose, Heathaway. It was

a religious rave with a cat strobe and muffled bass of

mother’s voice. (I ran a fever of 105 that day.)

• 18. Bought myself a gigapet. A duck. Fed it for a while.

Gave it a bath. Forgot about it for almost a couple months.

One day, while cleaning, I found a chain and he was there

on the end. Hey, little duck. Mad freaky, hoppin’ around

with his hair out, squawking diagonal lines. In a tuxedo.

sidebar!

why’s (poignant) guide to ruby

25

5. And So, the Quick Trip Came to an Eased, Cushioned
Halt

So now we have a problem. I get the feeling that you are enjoying this way too much. And you haven’t even

hit the chapter where I use jump-roping songs to help you learn how to parse XML!

If you’re already enjoying this, then things are really going bad. Two chapters from now you’ll be writing

your own Ruby programs. In fact, it’s right about there that I’ll have you start writing your own role-playing

game, your own file-sharing network (a la BitTorrent), as well as a program that will pull genuine random

numbers from the Internet.

And you know (you’ve got to know!) that this is going to turn into an obsession. First, you’ll completely

forget to take the dog out. It’ll be standing by the screen door, darting its head about, as your eyes devour

the code, as your fingers slip messages to the computer.

Thanks to your neglect, things will start to break. Your mounds of printed sheets of code will cover up

your air vents. Your furnace will choke. The trash will pile-up: take-out boxes you hurriedly ordered in,

junk mail you couldn’t care to dispose of. Your own uncleanliness will pollute the air. Moss will infest the

rafters, the water will clog, animals will let themselves in, trees will come up through the foundations.

But your computer will be well-cared for. And you, Smotchkkiss, will have nourished it with your

knowledge. In the eons you will have spent with your machine, you will have become part-CPU. And it will

have become part-flesh. Your arms will flow directly into its ports. Your eyes will accept the video directly

from DVI-24 pin. Your lungs will sit just above the processor, cooling it.

3. A Quick Ride Through Ruby 26

And just as the room is ready to force itself shut upon you, just as all the overgrowth swallows you and

your machine, you will finish your script. You and the machine together will run this latest Ruby script,

the product of your obsession. And the script will fire up chainsaws to trim the trees, hearths to warm

and regulate the house. Builder nanites will rush from your script, reconstructing your quarters, retiling,

renovating, chroming, polishing, disinfecting. Mighty androids will force your crumbling house into firm,

rigid architecture. Great pillars will rise, statues chiseled. You will have dominion over this palatial estate

and over the encompassing mountains and islands of your stronghold.

So I guess you’re going to be okay. Whatdya say? Let’s get moving on this script of yours?

why’s (poignant) guide to ruby

27

4.

Floating Little Leaves of Code

4. Floating Little Leaves of Code 28

I’ve never seen the ham do anything but leak juice. Today, our business in Ambrose Caverns is with the elf.

He is a crucial part of the next lessons. Let’s all make him feel welcome. Go start warming up your listening

hats! (And please change out of those ridiculous stirrup pants.)

A prompt warning: this lesson is much slower. Stay with it. This will be a long, deep breath. The most

crucial stage of your instruction. It may seem like you’re not learning much code at first. You will be

learning concepts. By the end of this chapter, you will know Ruby’s beauty. The coziness of the code will

become a down sleeping bag for your own solace.

1. The Leaf as a Status Symbol in Ambrose
Alright, Elf. Give us a quick rundown of the currency issues you’ve faced there in your kingdom.

Yeah, that’s not the way I remember it. This Elf was paging me constantly. When I refused to call him back,

he somehow left a message on my pager. Meaning: it beeped a couple times and then printed out a small

slip of paper. The slip said something to the effect of, “Get down here quick!” and also, “We’ve got to rid

the earth of this scourge of enterpreneurial caterpillars, these twisted insect vikings are suffocating my blue

crystals!”

Lately, the exchange rate has settled down between leaves and crystals. One treegrown note is worth five

crystals. So the basic money situation looks like this:
 blue_crystal = 1

 leaf_tender = 5

why’s (poignant) guide to ruby

29

This example is, like, totally last chapter. Still. It’s a start. We’re setting two variables. The equals sign is

used for assignment.

Now leaf_tender represents the number 5 (as in: five blue crystals.) This concept right here is half of

Ruby. We’re defining. We’re creating. This is half of the work. Assignment is the most basic form of

defining.

You can’t complain though, can you Elf? You’ve built an empire from cashing your blue crystals into the

new free market among the forest creatures. (And even though he’s an elf to us, he’s a tall monster to

them.)

Nonono. Hang on a sec. You’re not ready for what the Elf here is doing in his caves. You’ll think it’s all

positively inhumane, naughty, sick, tweeested, yada yada.

Now You’re Going to Hear the Animal Perfect Mission
Statement Because This Is A Book And We Have Time And No
Rush, Right?
Back, back, way back before speedboats, I owned a prize race horse who took a stumble on the track. She

did ten front flips and crashed into a guy who was carrying a full jar of mayonnaisse. We had blood and

mayonnaisse up and down the track. Needless to say, she was a disaster.

sidebar!

The Scarf Eaters
I hate to intrude upon your instruction, but I’ve already
walked all over it enough to warrant some further disregard.
Can I go over my next project with you?

I’ve pledged to write another book. (Trombones.) The good
news is that I won’t actually be writing any of it. You won’t
have to endure any more of this inane blathering.

It’s over between me and words. I’d love to stick around and
exploit them each, one after another, but it’s all becoming
quite predictable, wouldn’t you say? Eventually, they will
all be used and I’d have to come up with fake words and that
would be way too cnoofy.

Now. The deal isn’t cut yet, but I’m in negotiations with Anna
Quindlen to do my ghost writing. We’re tag-teaming on a
book that’s going to blow the (Poignant) Guide right out of
your hands. To put it bluntly, the Guide will be worthless.
You won’t be able to pile enough pomegranates on top of the
thing.

So this new book. The Scarf Eaters. It’s a coming-of-age
novel. But it’s also a beginner’s guide to Macromedia Flash.
It’s like Judy Blume crossed Praystation. It’s like 0sil8
starring Hillary Duff.

I don’t want to give away the plot at all, but to tug your
appetite I’ll just say this: one kid talks to his dead brother in
ActionScript. More to come.

sidebar!

4. Floating Little Leaves of Code 30

The vet took one look at her and swore she’d never walk again. Her legs were gone and the vet wouldn’t

allow a legless horse to just sit around. We’d need to put her down. He swore his life and career on it,

insisting we divide into two parallel lines. The people who could not refute the doctor’s claims on one side;

those too stubborn to accept his infallable medical reasoning on the other. The Elf, his pet ham, and I were

the only ones in that second line.

So while the others heaped up trophies and great wreaths around the horse, bidding it a fond farewell

before the bullet came to take him home, the Elf and I frantically pawed the Internet for answers. We took

matter into our own hands, cauterizing her leg wounds with live crawdads. It worked great! We now had a

horse again. Or at least: a horse body with a crustaceous abdominal frosting.

She scurried everywhere after that and lived for years in pleasantly moist underground cavities.

Animal Perfect is now the future of animal enhancement. They build new animals and salvage old-style

animals for parts. Of course, they’ve come a long ways. When Animal Perfect started, you’d see a full-grown

bear walk into Animal Perfect and you’d see a full-grown bear with sunglasses walk out. Completely cheesy.

Stick around and you’ll see a crab with his own jet pack. That’s a new 2004 model jetcrab.

But now, the whole operation is up and running. And the cleanliness of the place is astonishing. All the

equipment is so shiny. Everything is in chrome. Oh, and all the staff have concealed weapons. They’re

trained to kill anyone who enters unannounced. Or, if they run out of bullets, they’re trained to pistol whip

anyone who enters unannounced.

Elf, make me a starmonkey.

Some imaginary Ruby for you:

pipe.catch_a_star

Variable pipe. Method catch_a_star. A lot of Rubyists like to think of methods as a message. Whatever

comes before the dot is handed the message. The above code tells the pipe to catch_a_star.

This is the second half of Ruby. Putting things in motion. These things you define and create in the first

half start to act in the second half.
• Defining things.
• Putting those things into action.

why’s (poignant) guide to ruby

31

So what if the star catching code works? Where does the star go?

captive_star = pipe.catch_a_star

See, it’s up to you to collect the miserable, little star. If you don’t, it’ll simply vanish. Whenever you use a

method, you’ll always be given something back. You can ignore it or use it.

If you can learn to use the answers that methods give you back, then you will dominate.

Quickly then.

starmonkey = ratchet.attach(captive_monkey, captive_star)

The ratchet gets an attach message. What needs to be attached? The method arguments: the captive_

monkey and the captive_star. We are given back a starmonkey, which we have decided to hang on to.

This is turning out to be such a short, little proggie that I’m just going to put it all together as one statement.

starmonkey = ratchet.attach(captive_monkey, pipe.catch_a_star) + deco_hand_frog

See how pipe.catch_a_star is right in the arguments for the method? The caught star will get passed right

to the ratchet. No need to find a place to put it. Just let it go.

4. Floating Little Leaves of Code 32

2. Small and Nearly Worthless

The hotel here in Ambrose is no good at all. The beds are all lumpy. The elevator is tiny. One guy put all his

bags in the elevator and found out there wasn’t room for him. He hit the button and chased up the stairs

after it all. But the stairwell turned out to be too narrow and his shoulders got wedged going up.

The soap mini-bars they give you are sized down for elves, so it’s impossible to work up a lather. I hate it. I

keep mistaking them for contact lenses.

I turned on the faucet and nothing came out. Thing is: Ambrose is a place with magical properties, so I took

a chance. I put my hands under the spigot. Invisible, warm wetness. I felt the hurried sensation of running

water, darting through my fingers. When I took my hands away, they were dry and clean.

It was an amazing nothingness to experience. It was just like nil.

Nil
In Ruby, nil represents an emptiness. It is without value. It isn’t zero. Zero is a number.

It’s Ruby’s own walking dead, a flatlined keyword. You can’t add to it, it doesn’t evolve. But it’s terribly

popular. This skeleton’s smiling in all the pictures.

plastic_cup = nil

The above plastic_cup is empty. You could argue that the plastic_cup contains something, a nil. The

nil represents the emptiness, though, so go ahead and call it empty.

Some of you who have programmed before will be tempted to say the plastic_cup is undefined. How

about let’s not. When you say a variable is undefined, you’re saying that Ruby simply has no recollection of

the variable, it doesn’t know the var, it’s absolutely non-existent.

But Ruby is aware of the plastic_cup. Ruby can easily look in the plastic_cup. It’s empty, but not

undefined.

why’s (poignant) guide to ruby

33

False

The cat Trady Blix. Frozen in emptiness.

Immaculate whiskers rigid. Placid eyes of lake.

Tail of warm icicle. Sponsored by a Very Powerful

Pause Button.

The darkness surrounding Blix can be called

negative space. Hang on to that phrase. Let

it suggest that the emptiness has a negative

connotation. In a similar way, nil has a slightly

sour note that it whistles.

Generally speaking, everything in Ruby has a

positive charge to it. This spark flows through

strings, numbers, regexps, all of it. Only two

keywords wear a shady cloak: nil and false

draggin us down.

You can test that charge with an if keyword. It

looks very much like the do blocks we saw in the

last chapter, in that both end with an end.
 if plastic_cup
 print “Plastic cup is on the up ‘n’ up!”
 end

If plastic_cup contains either nil or false, you

won’t see anything print to the screen. They’re not

on the if guest list. So if isn’t going to run any of

the code it’s protecting.

But nil and false need not walk away in shame.

They may be of questionable character, but unless

runs a smaller establishment that caters to the

bedraggled. The unless keyword has a policy of

sidebar!

Make Your Own Starmonkey!
1. Turn a mug upside-down.

2. Attach an apple with a rubber band.

3. Shove car keys into the sides of the apple.

4. Glue star face.

(continues over)

4. Floating Little Leaves of Code 34

only allowing those with a negative charge in.

Who are: nil and false.
 unless plastic_cup
 print “Plastic cup is on the down low.”
 end

You can also use if and unless at the end of a

single line of code, if that’s all that is being

protected.
 print “Yeah, plastic cup is up again!” if plastic_
cup
 print “Hardly. It’s down.” unless plastic_cup

And another nice trick: stack the if and unless.
 print “We’re using plastic ‘cause we don’t have
glass.” if plastic_cup unless glass_cup

This trick is a gorgeous way of expressing, Do this

only if a is true and b isn’t true.

Now that you’ve met false, I’m sure you can see

what’s on next.

True
approaching_guy = true

I saw true at the hotel buffet tables today. I cannot

stand that guy. His stance is way too wide. And

you’ve never met anyone who planted his feet so

hard in the ground. He wears this corny necklace

made out of shells. His face exudes this brash

confidence. (You can tell he’s exerting all of his

restraint just to keep from bursting into Neo flight.)

To be honest, I can’t be around someone who always has to be right. This true is always saying, “A-OK.”

Flashing hang ten. And seriously, he loves that necklace. Wears it constantly.

As you’d suspect, he’s backstage at everything on the if event schedule.

print “Hugo Boss” if true acts like print “Hugo Boss”.

Occassionally, if will haul out the velvet ropes to exercise some crowd control. The double equals

gives the appearance of a short link of ropes, right along the sides of a red carpet where only true can be

admitted.
 if approaching_guy == true
 print “That necklace is classic.”
 end

The double equals is simply an ID check. Do the gentleman at both ends of this rope appear to match?

In this way, you control who if lets in. If you have a hard time getting along with true as I do, you can

(continued)

You have two complementary star faces waiting in your

account.

Standard, placid.

Eating chalk.

sidebar!

why’s (poignant) guide to ruby

35

heartily welcome false.
 if approaching_guy == false
 print “Get in here, you conniving devil.”
 end

Same goes for unless. The gateway is yours. Take possession of it.

Again, I Want You to Dominate
Now, you want a head trip? The double equals sign is a method. Can you guess how it works? Here,

check it out with the dot and parens:

approaching_guy.==(true)

Ruby allows the shortcut, though. You can drop the dot and back away slowly.

Now, do you remember what you need to do to dominate in Ruby? Use the answers the methods give

you.
 if nil.==(true)

 print “This will never see realization.”
 end

In the above, how is the method’s answer being used?

Let’s take the statement nil == true. This will fail every time. No match. When there’s no match,

the double equals method answers with false. A shake of the head. That answer is given to if, who can’t

accept a false. The print never sees realization.
 at_hotel = true
 email = if at_hotel

 “why@hotelambrose.com”
 else
 “why@drnhowardcham.com”
 end

Even though if isn’t a method, if does give a return answer. Look at the above and wonder over what

happens when at_hotel is true.

The if will return the answer given by the code it chooses to run. In the case of at_hotel being true, the first

string, my e-mail address at Hotel Ambrose, will be returned. The else keyword marks code which will run,

should if fail. If at_hotel is false, the if will answer with my e-mail address at Dr. N. Howard Cham’s office,

where I take my apprenticeship.

Should you have several lines of code in an if or unless, only the answer from the last full statement

will be used.
 email = if at_hotel

 address = “why”
 address << “@hotelambrose”
 address << “.com”
 end

Three lines of code inside the if. The first line assigns a string with my name in it to a variable. The

second and third lines add the rest of my e-mail address on to the end. The double less-than << is the

concatenation operator. To concatenate is to append, or add to the end.

4. Floating Little Leaves of Code 36

Just as we saw with the equality checker ==, the concatenator is a method. After adding to the end of the

string, the concatenator also answers with that very string. So, the third line, which could be read as

address.<<(“.com”), gives back address, which the if then hands back for email’s assignment.

Here’s a question: what if the if fails? What if at_hotel is false in the above example? Is anything returned?

Nothing is assigned to email, right?

Yes, nothing is returned. By which I mean: nil is returned. And often nil is a very useful answer.
 print(if at_hotel.nil?
 “No clue if he’s in the hotel.”
 elsif at_hotel == true

 “Definitely in.”
 elsif at_hotel == false
 “He’s out.”
 else
 “The system is on the freee-itz.”
 end)

You can use the nil? method on any value in Ruby. Again, think of it as a message. To the value: “Are you

nil? Are you empty?”

If at_hotel is empty, Ruby doesn’t have any idea if I’m in the hotel or not. So if answers with the “No clue”

string. In order to handle the true or false possibilities, the elsif keyword is used. While you can have

only one if and one else, you can fill the inbetween with an exorbitant number of elsif keywords. Each

elsif acts as a further if test. Checking for a positive charge.

If you’re doing okay at this point, then you’re in tip-top shape for the rest of the book. You have seen some

pretty tough code in the last few examples. You strong fellow.

3. Chaining Delusions Together

You finish reading the above comic and retire to your daybed for reflection. It’s one of those canopy affairs

which is always logjammed with pillows. You sit atop the pile, gazing out upon the world. You see the tall

smokestacks belching wide spools of fume and haze. The tangled concourses of freeways smattered with

swift, shimmering traffic is but a gently pulsing eye muscle from your vantage point.

It is all so fantastic. How the colors of the horizon spread across the landscape as a great mix of butter and

grease with a tablespoon of vanilla extract.

why’s (poignant) guide to ruby

37

Yet, for all of the beauty which beckons for your attention, the images of the Elf and his Olympic Hopeful

return. And more especially, that order for 55,000 starmonkeys. 55,000 starmonkeys, you think. Fifty-

five Thousand.

You think of just the number itself. 55,000. It’s walking down a road. It might be in a forest, you don’t

know for sure as your eyes are fixed right on the number itself. It’s stopping and talking to people. To

tennis players, to a men’s choral group. There is merriment and good feeling. When it laughs, its lower

zeros quiver with glee.

You want to talk to it. You want to skip along that forest trail with it. You want to climb aboard a jet bound

to Brazil with it. And after five days and four nights at the leisureful Costa do Sauipe Marriott Resort & Spa,

to marry it, to bear a family of 55,000 starmonkeys with it. To take possession of Nigeria with it.

With a flying leap, you dismount your pillow tower of isolation. Scrambling with the key, you unlock your

roll top desk and pull out a sheet of paper, holding it firmly upon the desk. You begin scribbling.

Take possession of Nigeria with my new 55,000 starmonkeys…
Over it, build Nigeria-sized vegetarians only casino and go-cart arena…
Wings… we could have our own special sauce on the wings that’s different…
Mustard + codeine = Smotchkkiss’ Starry Starmonkey Glow Sauce…
Franchise, franchise… logos…
Employee instructional videos…
When you give the customer change, let them reach inside the frog on your hand to get it…
If they have no change, at least put their reciept some place where they have to touch the frog…
We’re leveling the playing field here…
Advertise cheap pizza, let’s make our money off soda…
Collect all 4 frosted glasses…

Wow, the ideas are really coming out. You literally had to smack yourself to stop. We need to put these

in a safe place. Actually, we should store them on your computer and mangle the words. You look out the

window and watch for FBI. I’m going to start this script.

The Flipping Script
 print “Type and be diabolical: “
 idea_backwards = gets.reverse

Let this script be your confidante. It will ask for evil plans and turn their letters backwards. The gets

method is built into Ruby. It’s a kernel method like print. This method gets will pause Ruby to let you

type. When you hit Enter, gets will then stop paying attention to your keyboard punchings and answer back

to Ruby with a string that contains everything you typed.

The reverse method is then used on the string that gets is giving back. The reverse method is part of the

String class. Which means that anything which is a string has the reverse method available.

More on classes in the next chapter, for now just know that a lot of methods are only available with

certain types of values.

I don’t think reverse is going to cut it. The authorities only need to put a mirror to “airegiN fo noissessop

ekaT.” Bust us when starmonkeys start to touch down in Lagos.

4. Floating Little Leaves of Code 38

The capital letters give it away. Maybe if we uppercase all letters in the string before we reverse it.
 idea_backwards = gets.upcase.reverse

Your Repetitiveness Pays Off
You hand me a legal pad, doused in illegible shorthand. Scanning over it, I start to notice patterns. That

you seem to use the same set of words repeatedly in your musings. Words like starmonkey, Nigeria,

firebomb. Some phrases even. Put the kabosh on. That gets said a lot.

Let us disguise these foul terms, my brother. Let us obscure them from itching eyes that cry to know our

delicate schemes and to thwart us from having great pleasure and many go-carts. We will replace them with

the most innocent language. New words with secret meaning.

I start up a word list, a Ruby Hash, which contains these oft seen and dangerous words of yours. In the

Hash, each dangerous word is matched up against a code word (or phrase). The code word will be swapped

in for the real word.
 code_words = {
 ‘starmonkeys’ => ‘Phil and Pete, those prickly chancellors of the New Reich’,
 ‘catapult’ => ‘chucky go-go’, ‘firebomb’ => ‘Heat-Assisted Living’,
 ‘Nigeria’ => “Ny and Jerry’s Dry Cleaning (with Donuts)”,

 ‘Put the kabosh on’ => ‘Put the cable box on’
 }

The words which are placed before the arrow are called keys. The words after the arrows, the definitions,

are often just called values.

Notice the double quotes around Ny and Jerry’s Dry Cleaning (with Donuts). Since a single quote is

being used an apostrophe, we can’t use single quotes

around the string. (Although, you can use single

quotes if you put a backslash before the apostrophe

such as: ‘Ny and Jerry\’s Dry Cleaning (with

Donuts)’.)

Should you need to look up a specific word, you can

do so by using the square brackets method.

code_words[‘catapult’] will answer with the string
‘chucky go-go’.

Look at the square brackets as if they are a wooden

pallet the word is sitting upon. A forklift could slide

its prongs into each side of the pallet and bring it

down from a shelf back in the warehouse. The word

on the pallet is called the index. We are asking the

forklift to find the index for us and bring back its

corresponding value.

If you’ve never been to a warehouse, you could also

sidebar!

Get Ahead with The Tiger’s Vest

Want to start using Ruby alongside your reading? Split your
attention and head off to Expansion Pak I: The Tiger’s Vest,
a trite mini-chapter which will aid you in installing Ruby. In
addition, you’ll learn how to use Irb and Ri, two teaching aids
that come with Ruby which will really speed you up in your
learning.

sidebar!

why’s (poignant) guide to ruby

39

look at the brackets as handles. Imagine an industrious worker putting on his work gloves and hefting the

index back to your custody. If you’ve never used handles before, then I’m giving you about thirty seconds to

find a handle and use it before I blow my lid.

As with many of the other operators you’ve seen recently, the index brackets are simply a shortcut for a

method.

code_words.[](‘catapult’) will answer with the string ‘chucky go-go’.

Making the Swap
I went ahead and saved the Hash of code words to a file called wordlist.rb.
 require ‘wordlist’

 # Get evil idea and swap in code words
 print “Enter your new idea: “
 idea = gets
 code_words.each do |real, code|
 idea.gsub!(real, code)

 end

 # Save the jibberish to a new file
 print “File encoded. Please enter a name for this idea: “
 idea_name = gets.strip

 File::open(“idea-” + idea_name + “.txt”, “w”) do |f|

 f << idea
 end

Script starts by pulling in our word list. Like gets and print, the require method is a kernel method, you can

use it anywhere. I give it the string ‘wordlist’ and it will look for a file named wordlist.rb.

After that, there are two sections. I am marking these sections with comments, the lines that start with

pound symbols. Comments are useful notes that accompany your code. Folks who come wandering

through your code will appreciate the help. When going through your own code after some time has passed,

comments will help you get back into your mindset. And there’s software out there that can take your

comments and build documents from them. (RDoc and Ri—see Expansion Pak #1!)

I like comments because I can skim a big pile of code and spot the highlights.

As the comments tell us, the first section asks you for your evil idea and swaps in the new code words. The

second section saves the encoded idea into a new text file.
 code_words.each do |real, code|
 idea.gsub!(real, code)

 end

You see the each method? The each method is all over in Ruby. It’s available for Arrays, Hashes, even

Strings. Here, our code_words dictionary is kept in a Hash. This each method will hurry through all

the pairs of the Hash, one dangerous word matched with its code word, handing each pair to the gsub!

method for the actual replacement.

In Ruby, gsub is short for global substitution. The method is used to search and replace. Here, we want to

find all the occurences of a dangerous word and replace with its safe code word. With gsub, you provide the

4. Floating Little Leaves of Code 40

word to find as the first argument, then the word to put in its place as the second argument.

Why aren’t we hanging on to the answer from gsub? Doesn’t gsub give us an answer back that we should

keep? You’d think the line would read:
 safe_idea = idea.gsub(real, code)

Yes, with gsub we’d need to hang on to its answer. We’re using a variation of gsub that is totally hyper.

Notice the exclamation mark on the gsub! used inside the each block. The exclamation mark is a sign

that gsub! is a bit of a zealot. See, gsub! will go ahead and replace the words in idea directly. When it’s

done idea will contain the newly altered string and you won’t be able to find the old string.

Call gsub! a destructive method. It makes its changes to the value directly. Whereas gsub will leave the

value intact, answering back with a new string which contains the alterations. (Why must gsub! scream

when he descends upon his prey? Merciless assailant!)

 Text Files of a Madman
Let us now save the encoded idea to a file.
 # Save the jibberish to a new file
 print “File encoded. Please enter a name for this idea: “
 idea_name = gets.strip

 File::open(‘idea-’ + idea_name + ‘.txt’, ‘w’) do |f|

 f << idea
 end

This section starts by asking you for a name by which the idea can be called. This name is used to build a

file name when we save the idea.

The strip method is for strings. This method trims spaces and blank lines from the beginning and

end of the string. This will remove the Enter at the end of the string you typed. But it’ll also handle spaces

if you accidentally left any.

After we have the idea’s name, we open a new, blank text file. The file name is built by adding strings

together. If you typed in ‘mustard-plus-codeine’, then our math will be: ‘idea-’ + ‘mustard-plus-codeine’

+ ‘.txt’. Ruby presses these into a single string. ‘idea-mustard-plus-codeine.txt’ is the file.

We’re using the class method File::open to create the new file. Up until now, we’ve used several kernel

methods to do our work. We hand the print method a string and it prints the string on your screen. One

secret about kernel methods like print: they are actually class methods.

Kernel::print(“55,000 Starmonkey Salute!”)

What does this mean? Why does it matter? It means Kernel is the center of Ruby’s universe. Wherever

you are in your script, Kernel is right beside you. You don’t even need to spell Kernel out for Ruby. Ruby

knows to check Kernel.

Most methods are more specialized than print or gets. Take the File::open for example. The creator of

Ruby, Matz, has given us many different methods which which read, rename, or delete files. They are all

why’s (poignant) guide to ruby

41

organized inside the File class.

File::read(“idea-mustard-plus-codeine.txt”) will answer back with a string containing all of the text from
your idea file.

File::rename(“old_file.txt”, “new_file.txt”) will rename old_file.txt.

File::delete(“new_file.txt”) will nuke the new file.

These File methods are all built right into Ruby. They are all just stored in a container called the

File class. So, while you can safely call kernel methods without needing to type Kernel, Ruby doesn’t

automatically check the File class. You’ll need to give the full method name.
 File::open(‘idea-’ + idea_name + ‘.txt’, ‘w’) do |f|

 f << idea
 end

We pass two arguments into File::open. The first is the file name to open. The second is a string

containing our file mode. We use ‘w’, which means to write to a brand-new file. (Other options are: ‘r’ to

read from the file or ‘a’ to add to the end of the file.)

The file is opened for writing and we are handed back the file in variable f, which can be seen sliding down

the chute into our block. Inside the block, we write to the file. When the block closes with end, our file

is closed as well.

Notice we use the concatenator << to write to the file. We can do this because files have a method called

<< just like strings do.

Settle Down, Your Ideas Aren’t Trapped
Here, let’s get your ideas back to their original verbage, so you can rumminate over their brilliance.
 require ‘wordlist’

 # Print each idea out with the words fixed
 Dir[‘idea-*.txt’].each do |file_name|

 idea = File.read(file_name)
 code_words.each do |real, code|
 idea.gsub!(code, real)

 end
 puts idea
 end

By now, you should be up to snuff with most of this example. I won’t bore you with all of the mundane

details. See if you can figure out how it works on your own.

We have an interesting class method here, though. The Dir::[] method searches a directory (some of you

may call them “folders”). Just as you’ve seen with Hashes, the index brackets can be class methods. (Can

you start to see the shiny, glinting gorgeousness of Ruby?)

So we’re using the forklift to get those files in the directory which match ‘idea-*.txt’. The Dir::[] method

will use the asterisk as a wildcard. We’re basically saying, “Match anything that starts with idea- and ends

with .txt.” The forklift shuffles off to the directory and comes back with a list of all matching files.

That list of files will come in the form of Array the Caterpillar, with a String for each file. If you are

4. Floating Little Leaves of Code 42

curious and want to play with with Dir::[], try this:

p Dir[‘idea-*.txt’] will print:

[‘idea-mustard-plus-codeine.txt’] (an Array of file names!)

Yes, the p method works like print. But where print is designed for displaying strings, p will print anything.

Check this out.

p File::methods will print:

[“send”, “display”, “name”, “exist?”, “split”, ... a whole list of method names!]

4. The Miracle of Blocks

Since you and I are becoming closer friends as we share this time together, I should probably let you in on a

bit of the history going on here. It’s a good time for a break I say.

First, you should know that Blix is my cat. My second pet to Bigelow. Granted, we hardly see each other

anymore. He’s completely self-sufficient. I’m not exactly sure where he’s living these days, but he no longer

lives in the antechamber to my quarters. He emptied his savings account about seven months ago.

He does have a set of keys for the house and the Seville. Should he ever find himself stranded, I will gladly

step away from our differences and entertain his antics around the house again.

Make no mistake. I miss having him around. Can’t imagine he misses my company, but I miss his.

A Siren and A Prayer
I first saw Blix on television when I was a boy. He had a starring role on a very gritty police drama called A

Siren and A Prayer. The show was about a god-fearing police squad that did their jobs, did them well, and

saw their share of miracles out on the beat. I mean the officers on this show were great guys, very religious,

practically clergy. But, you know, even clergymen don’t have the good sense to kill a guy after he’s gone too

far. These guys knew where to draw that line. They walked that line every day.

So, it was a pretty bloody show, but they always had a good moral at the end. Most times the moral was

something along the lines of, “Wow, we got out of that one quick.” But there’s serious camaraderie in a

statement like that.

why’s (poignant) guide to ruby

43

The show basically revolved around this one officer.

“Mad” Dick Robinson. People called him Mad

because he was basically insane. I can’t remember

if he was actually clinically insane, but people were

always questioning his decisions. Mad often blew

his top and chewed out some of the other officers,

most of whom had unquestionable moral character.

But we all know it’s a tough world, the stakes are

high out there, and everyone who watched the show

held Mad in great regard. I think everyone on the

squad grew quite a bit as people, thanks to Mad’s

passion.

The officers couldn’t do it all themselves though. In

every single episode, they plead with a greater force

for assistance. And, in every single episode, they

got their tips from a cat named Terry (played by my

cat Blix.) He was just a kitten at the time and, as a

young boy tuning into A Siren and A Prayer, I found

myself longing for my own crime-sniffing cat. Terry

took these guys down the subway tunnels, through

the rotting stench of abandoned marinas, into

backdoors of tall, industrial smokestacks.

Sometimes he was all over an episode, darting in

and out, preparing traps and directing traffic. But

other times you wouldn’t see him the whole episode.

Then you’d rewind through the whole show and look

and look and look. You’d give up. He can’t be in

that episode.

Still, you can’t bear to let it go, so you go comb

through the whole episode with the jog on your

remote, combing, pouring over each scene. And

there he is. Way up behind the floodlight that was

turned up too high. The one that left Mad with

permanent eye damage. Why? Why burn out the

retinas of your own colleague, Terry?

But the question never got answered because the

series was cancelled. They started to do special

sidebar!

Excerpt from The Scarf Eaters
(from Chapter V: A Man in Uniform.)

In April, the callow lilies came back. They stretched their
baby angel wings out and reached for the world. Gently, their
tendrils caressed the sullen fence posts until even they lilted
lovelier.

From her bedroom window, Lara watched the lilies exude
their staunch femininity. She slipped the tassels of a fresh,
carpathian, embroidered scarf into her mouth and ate slowly.
The long cloth slid down her throat and tickled as it snaked
along her esophagus. She giggled and burped.

Oh, how the flora drew her in. Looking at flowers went so well
with being a teenage girl. She wanted to paint them, so she
opened a new Flash template. A blank movie this time.

She set her cursor loose in the garden of her movie’s viewable
area. Vector white lines below shorter vector yellow lines.
She selected the white lines and grouped them together. She
even moved them to a new layer entitled “Cry, Baby Angel,
Cry.” Then she converted them into a graphic object and
moved them to the library.

She felt a warm chill as she moved the long, white petals to
her movie’s library. It felt so official. I choose you. I name
you. Dwell in the comfort of my palace forevermore.

Heh. She laughed. Colorado Springs was hardly a “palace.”

Since they had moved, Dad had only been home once. He
had barged through the front door in full uniform and had
given quite a start to both Lara and her mother. Her mother
had even dropped a head of lettuce—which head she had just
finished washing—in a pitcher of Lick-M-Aid.

The pitcher was just wide enough for the lettuce and it lodged
in there pretty good. Dad came over and yanked at the moist
head for sometime until declaring it FUBAR, in a voice both
bemused and then crestfallen. He tossed the clotted spout in
the trash bin.

It was only later that day that Lara’s mother realized that
she could have simply halved the lettuce with an electric
knife. Dad laughed and slapped his forehead. He then went
around and slapped Lara’s forehead, and her mother’s too,
affectionately.

“We just weren’t thinking, were we?” is what he said. “And
who dares blame us? We’re a real family today. And we
shouldn’t have to do anything else on the day we got our
family back.”

Lara’s smiled reflected across the glass of her monitor. She
chose the text tool and in 42 point serif typed: “Dad.” She
created a path for it and let it tween off the right side of the
screen. She cried long after it was gone.

sidebar!

4. Floating Little Leaves of Code 44

effects with the cat and it all fell apart. In the last episode of the show, there is a moment where Terry is

trapped at the top of a crane, about to fall into the searing slag in the furnace of an iron smelt. He looks

back. No going back. He looks down. Paws over eyes (no joke!), he leaps from the crane and, mid-flight,

snags a rope and swings to safety, coming down on a soft antelope hide that one of the workers had

presumably been tanning that afternoon.

People switched off the television set the very moment the scene aired. They tried changing the name. First

it was God Gave Us a Squad. Kiss of Pain. Then, Kiss of Pain in Maine, since the entire precinct ended up

relocating there. But the magic was gone. I went back to summer school that year to make up some classes

and all the kids had pretty much moved on to football pencils.

Blocks
A couple years ago, I started teaching Blix about Ruby. When we got to this part in his lessons, the part that

covers blocks, he said to me, “Blocks remind me of Mad Dick Robinson.”

“Oh?” I hadn’t heard that name in awhile. “I can’t see how that could be.”

“Well, you say blocks can be difficult to understand.”

“They’re not difficult,” I said. “A block is just code that’s grouped together.”

“And Mad was just an officer, sworn to uphold his duty,” he said. “But he was a real miracle to watch out in

the field. Now, this first example you’ve shown me…” He pointed to an example I’d written down for him.
 kitty_toys =

 [:shape => ‘sock’, :fabric => ‘cashmere’] +

 [:shape => ‘mouse’, :fabric => ‘calico’] +

 [:shape => ‘eggroll’, :fabric => ‘chenille’]

 kitty_toys.sort_by { |toy| toy[:fabric] }

“This is a small miracle,” he said. “I can’t deny its beauty. Look, there are my kitty toys, laid out with their

characteristics. Below them, the block, sorting them by fabric.”

“I apologize if your list of toys looks a bit tricky,” I said. Like you, he had learned about the Array, the

caterpillar stapled into the code, with square brackets on each side and each item separated by commas.

(Ah, here is one: [‘sock’, ‘mouse’, ‘eggroll’].) He had also been taught the Hash, which is like a dictionary,

with curly braces on each end which look like small, open books. Commas in the Hash between each pair.

Each word in the dictionary matched up with its definition by an arrow. (Be beholden: {‘blix’ => ‘cat’,

‘why’ => ‘human’}.)

“Yes, vexing,” he said. “It has square brackets like it’s an Array, but with the arrows like it’s a Hash. I don’t

think you’re going to get away with that.”

“It does seem a bit subversive, doesn’t it?” I said, tease-nudging him with a spoon. “I’ve done your kitty toy

list in a mix of the two. I’m using a shortcut. Which is: If you use arrows inside of an Array, you’ll

end up with a Hash inside of that Array.”

why’s (poignant) guide to ruby

45

“Oh, I see,” he said. “You criss-crossed ‘em. How neat!”

“Yes, yes, you’re on it,” I said. He was also very good with a protractor. “I have three Arrays, each with a

Hash inside. Notice the plus signs? I’m adding them into one big Array. Here’s another way of writing it…”

I jotted down.
 kitty_toys = [
 {:shape => ‘sock’, :fabric => ‘cashmere’},

 {:shape => ‘mouse’, :fabric => ‘calico’},

 {:shape => ‘eggroll’, :fabric => ‘chenille’}

]

One Array, which acts as our list of chew toys. Three Hashes in the Array to describe each toy.

Sorting and Iterating to Save Lives
“Let’s sort your toys by shape now,” I said. “Then, we’ll print them out in that order.”
 kitty_toys.sort_by { |toy| toy[:shape] }.each do |toy|

 puts “Blixy has a #{ toy[:shape] } made of #{ toy[:fabric] }”
 end

“How does sort_by work?” asked Blix. “I can tell it’s a method you can use with Arrays. Because kitty_toys

is an Array. But what is toy?”

“Okay, toy is a block argument,” I said. “Remember: the skinny pipes on each side of toy make it a

chute.”

“Sure, but it looks like you’re using it like a Hash. Inside the block you have toy[:shape]. That looks like a

Hash.”

“The sort_by method is an iterator, Blix. It iterates, or cycles, through a list of things. You remember

that episode when Mad…”

“Episode?” he said. Yeah, he can’t understand the concept of TV dramas. Yeah, I’ve tried explaining.

“Or, yeah, remember that one eyewitness account we watched where Mad was trying to talk down that

crazy spelling bee contestant from the ledge of an college library?”

“I remember it better than you because I was riding in a remote control plane.” Yep, it was one of those

episodes.

“Do you remember how Mad got the guy to come down?” I asked.

“People in spelling bees love letters,” said Blix. “So what Mad did was a genius move on his part. He started

with the letter A and gave reasons, for all the letters of the alphabet, why the guy should walk back down the

building and be safe on the ground.”

”’A is for the Architecture of buildings like this,’” I said, in a gruff Mad voice. ”’Which give us hope in a

crumbling world.’”

”’B is for Big Guys, like your friend Mad the Cop,’” said Blix. ”’Guys who help people all the time and don’t

4. Floating Little Leaves of Code 46

know how to spell too great, but still help guys who spell really great.’”

“See, he went through all the letters, one at a time. He was iterating through them.” It Err Ate Ing.

“But the guy jumped anyway, Why. He jumped off on letter Q or something.”

”’Q is for Quiet Moments that help us calm down and think about all of life’s little pleasures, so we don’t get

all uptight and starting goofing around on tiptoes at the very edge of a big, bad building.’”

“And then he jumped,” said Blix. He shook his head. “You can’t blame Mad. He did his best.”

“He had a big heart, that’s for sure,” I said, patting Blix on the shoulder.
 kitty_toys.sort_by { |toy| toy[:shape] }.each do |toy|

 puts “Blixy has a #{ toy[:shape] } made of #{ toy[:fabric] }”
 end

“As for your sort_by, it starts at the top of the list and goes through each item, one at a time. So toy is

one of those items. With each item, sort_by stops and slides that item down the chute, under the toy

name, and let’s you figure out what to do with it.”

“Okay, so toy takes turns being each of the different toys I have.”

“That’s right,” I said. “You know how I’ve really been harping on using the answers that methods give you?

Here, we’re simply looking up the toy’s shape inside the block. The block then answers to sort_by with the

shape string, such as “mouse” or “sock”. Once it’s done cycling through the whole list, sort_by will have

alphabetically compared each of the shape strings and will give back a new sorted Array.”

 An Unfinished Lesson
“That’s good enough for today,” said Blix. “Can I have a fresh saucer of milk, please?”

I filled his saucer to the brim and he guzzled from it for some time while I took a poker and jabbed at coals

in the fireplace. My mind wandered and I couldn’t help but think further of blocks. I wondered what I

would teach Blix next.

I probably would have taught him about next. When you are iterating through a list, you may use next to

skip on to the next item. Here we’re counting toys that have a non-eggroll shape by skipping those that

do with next.
 non_eggroll = 0
 kitty_toys.each do |toy|

 next if toy[:shape] == ‘eggroll’
 non_eggroll = non_eggroll + 1

 end

why’s (poignant) guide to ruby

47

I could also have taught him about break, which kicks you out of an iterating loop. In the code below,

we’ll print out (with p) each of the toy Hashes until we hit the toy whose fabric is chenille. The break will

cause the each to abruptly end.
 kitty_toys.each do |toy|
 break if toy[:fabric] == ‘chenille’

 p toy
 end

I never got to teach him such things. I continued poking away at a particularly stubborn coal which was

caught in the iron curtain of the fireplace and threatened to drop on my antelope skin rug.

As I hacked away ferociously at the black stone, Blix slipped away, presumably on the bus bound for Wixl,

the very bustling metropolis of the animal economies. Who knows, he may have first stopped in Ambrose

or Riathna or any of the other villages along the way. My instinct say that Wixl was his definitely his final

stop.

Without any student to instruct and coax along, I found myself quite lonely, holed up in the estate. In the

stillness of the dead corridors, I began to sketch out a biography in the form of this guide.

I worked on it whenever I found myself bored. And when I wasn’t bored, I could always switch on The

Phantom Menace to get me in the mood.

4. Floating Little Leaves of Code 48

If you are truely moved by Ruby,

shed a tear on this page.

Less ink will run.

why’s (poignant) guide to ruby

49

5.

Them What Make the Rules and Them
What Live the Dream

5. Them What Make the Rules 50

Frankly, I’m sick and tired of hearing that Dr. Cham was a madman. Yes, he tried to bury himself alive.

Yes, he electrocuted his niece. Yes, in fact, he did dynamite a retirement home. But this was all with good

cause and, in each case, I believe he took the correct course of action.

I’m sure you’d like to side with popular opinion, but you’re bound to feel some small trickle of admiration

for him once he’s taken time to teach you all about Ruby’s class definitions. And moreso when you learn

about mixins. And perhaps, by the end of the chapter, we can all start to look beyond the Doctor’s grievous

past and stop calling him a madman.

So if you need to call him a madman, I’d start heading down to the train tracks to smash up some long

flourescent light bulbs. Get it out of your system right now, before we dig in.

1. This One’s For the Disenfranchised

If you give me a number, which is any year from Dr. Cham’s life, I’ll give you a synopsis of that time period.

And I’ll do it as a Ruby method, so it’s an independent piece, an isolated chunk of code which can be hooked

up to the voice of a robotic volcano, when such a thing becomes the apex of authoritative voice talents.

Okay, so I need you to notice def and case and when. You’ve seen the Ranges, the closed accordions of

1895..1913, back in chapter 3. They contain both ends and in between. And the backslashes at the end of

each line simply ignore the Enter key at the end of each line, assuring Ruby that there is more of this line to

come.

So, please: def and case and when.
 def dr_chams_timeline(year)

 case year
 when 1894
 “Born.”
 when 1895..1913

 “Childhood in Lousville, Winston Co., Mississippi.”
 when 1914..1919
 “Worked at a pecan nursery; punched a Quaker.”
 when 1920..1928

 “Sailed in the Brotherhood of River Wisdomming, which journeyed \
 the Mississippi River and engaged in thoughtful self-improvement, \
 where he finished 140 credit hours from their Oarniversity.”
 when 1929
 “Returned to Louisville to pen a novel about time-travelling pheasant hunters.”
 when 1930..1933

 “Took up a respectable career insuring pecan nurseries. Financially stable, he \

why’s (poignant) guide to ruby

51

 spent time in Brazil and New Mexico, buying up rare paper-shell pecan trees. Just \
 as his notariety came to a crescendo: gosh, he tried to buried himself alive.”
 when 1934
 “Went back to writing his novel. Changed the hunters to insurance tycoons and the \
 pheasants to Quakers.”
 when 1935..1940

 “Took Arthur Cone, the Headmaster of the Brotherhood of River Wisdomming, as a \
 houseguest. Together for five years, engineering and inventing.”
 when 1941
 “And this is where things got interesting.”
 end
 end

The def keyword. Here is our first method definition. A plain kernel method, which can be used

anywhere in Ruby. And how do we run it?
 puts dr_chams_timeline(1941)

Which answers with “And this is where things got interesting.” It’s the same story again and again: use

your answers. I’ve set things up above so that the case statement always answers with a string. And since

the case statement is the final (and only) statement in the method, then the method answers with that

string. Trickling water spilling down from ledge to ledge.

Let me be clear about the case statement. Actually, I should call it a case..when statement, since they

cannot be used separately. The case keyword is followed by a value, which is compared against each of the

values which follow when keywords. The first value to qualify as a match is the one the case uses and the

rest are ignored. You can do the same thing with a bunch of if..elsif statements, but it’s wordier.
 case year
 when 1894
 “Born.”
 when 1895..1913

 “Childhood in Lousville, Winston Co., Mississippi.”
 else
 “No information about this year.”
 end

Is identical to:
 if 1894 === year

 “Born.”
 elsif 1895..1913 === year
 “Childhood in Lousville, Winston Co., Mississippi.”
 else

 “No information about this year.”
 end

The triple equals is a length of velvet rope, checking values much like the double equals. It’s just: the

triple equals is a longer rope and it sags a bit in the middle. It’s not as strict, it’s a bit more flexible.

Take the Ranges above. (1895..1913) isn’t at all equal to 1905. No, the Range (1895..1913) is only truly

equal to any other Range (1895..1913). In the case of a Range, the triple equals cuts you a break and lets

the Integer 1905 in, because even though it’s not equal to the Range, it’s included in the set of Integers

represented by the Range. Which is good enough in some cases, such as the timeline I put together earlier.

Which actually looked like a timeline, didn’t it? I mean, sure, dr_chams_timeline method is code, but it

does read like a timeline, clean and lovely.

5. Them What Make the Rules 52

But Was He Sick??
You know, he had such bad timing. He was scattered as a novelist, but his ventures into alchemy were very

promising. He had an elixir of goat’s milk and sea salt that got rid of leg aches. One guy even grew an inch

on a thumb he’d lost. He had an organic health smoke that smelled like foot but gave you night vision. He

was working on something called Liquid Ladder, but I’ve never seen or read anything else about it. It can’t

have been for climbing. Who knows.

sidebar!

Caring For You. And Your
Wellness.
I need you to be in a good mental state for the latter half of this
book. Now is the time to begin conditioning you.

Let’s start with some deep breathing. Give me a good deep
breath and count to four with me.

Here we go. 1. 2. 3. 4. Now exhale. You can feel your eyes.
Good, that’s exactly it.

Now let’s take a deep breath and, in your mind, draw a
hippopotamus as fast as you can. Quick quick. His legs, his
folds, his marshmallow teeth. Okay, done. Now exhale.

Take another deep breath and hold it tight. As you hold it
tightly in your chest, imagine the tightness is shrinking you
down into a bug. You’ve held your breath so hard that you’re
an insect. And all the other bugs saw you shrink and they
loved the stunt. They’re clapping and rubbing their feelers
together madly. But you had an apple in your hand when you
were big and it just caught up with you, crushed the whole
crowd. You’re dead, too. Now exhale.

Give me a solid deep breath and imagine you live in a town
where everything is made of telephone cords. The houses are
all telephone cords, the shingles, the rafters. The doorways
are a thick mass of telephone cords which you simply thrust
yourself through. When you go to bed, the bedspread is
telephone cords. And the mattress and box springs are
telephone cords, too. Like I said, everything is made out of
telephone cords. The telephone itself is made of telephone
cords. But the telephone cord going to the telephone is made

out of bread and a couple sticks. Now exhale.

Breathe in. 1. 2. 3. 4. Breathe out.

Breath in. 1. 2. Another short breath in. 3. 4. Imagine both
of your hands snapping off at the wrists and flying into your
computer screen and programming it from the inside. Exhale.

Big, big deep breath. Deep down inside you there is a
submarine. It has a tongue. Exhale.

Breathe through your nostrils. Deep breath. Filter the air
through your nostrils. Breathing through the nostrils gives
you quality air. Your nostrils flare, you are taking breaths
of nature’s air, the way God intended. Imagine a floppy
disk drive clogged up with orphans. And while it chokes on
orphans, you have good, wholesome God’s breath in your
lungs. But that pleasurable, life-giving air will become a
powerful toxin if held too long. Hurry, exhale God and
nature’s air!

Now, you will wake up, smoothing out the creases of this page
in your web browser. You will have full recollection of your
whole life and not forgetting any one of the many adventures
you have had in your life. You will feel rich and renewed and
expert. You will have no remembrance of this short exercise,
you will instead remember teaching a rabbit to use scissors
from a great distance.

And as you will wake up with your eyes directed to the top
of this exercise, you will begin again. But this time, try to
imagine that even your shadow is a telephone cord.

sidebar!

why’s (poignant) guide to ruby

53

One local newspaper actually visited Dr. Cham. Their book reviewer gave him four stars. Really. She did an

article on him. Gave him a rating.

Just know that Dr. N. Harold Cham felt terrible about his niece. He felt the shock treatment would work.

The polio probably would have killed her anyway, but he took the chance.

On Sept. 9, 1941, after sedating her with a dose of phenacetin in his private operating room, he attached

the conducting clips to Hannah’s nose, tongue, toes, and elbows. Assisted by his apprentice, a bespeckled

undergraduate named Marvin Holyoake, they sprinkled the girl with the flakes of a substance the doctor

called opus magnum. A white powder gold which would carry the current and blatantly energize the girl,

forcing her blood to bloom and fight and vanquish.

But how it failed, oh, and how, when the lever was tossed, she arched and kicked—and KABLAM!—and

BLOY-OY-OY-KKPOY! Ringlets of hair and a wall of light, and the bell of death rang. The experiment

collapsed in a dire plume of smoke and her innocence (for weeks, everyone started out with, “And she will

never have the chance…”) was a great pit in the floor and in their lungs.

To Hannah, I code.
 opus_magnum = true
 def save_hannah
 success = opus_magnum

 end

A method is its own island. And what goes on inside is unaffected by the simple variables around it. Dr.

Cham couldn’t breach the illness of his niece, no more than an opus_magnum variable can penetrate the

steely exterior of a method.

Should we run the save_hannah method, Ruby will squawk at us, claiming it sees no opus_magnum.

I’m talking about scope. Microscopes narrow and magnify your vision. Telescopes extend the range of

your vision. In Ruby, scope refers to a field of vision inside methods and blocks.

A method’s def statement opens its vision. Variable names introduced there will be seen by the method

and kept meaningful until its end closes its eyes. You can pass data into a method by using arguments and

data can be returned from the method, but the names used inside the method are only good for its scope.

Some variables have wider scope. Global variables like $LOAD_PATH, which start with a cash symbol, are

available in any scope. Instance variables like @NAMES, which start with an at are available anywhere inside

a class scope. Same goes for class variables like @@TICkETS. Class and instance variables will be explored in

a moment.

Blocks have scope, but it’s a bit fuzzier. More flexible.
 verb = ‘rescued’

 [‘sedated’, ‘sprinkled’, ‘electrocuted’].
 each do |verb|

 puts “Dr. Cham “ + verb + “ his niece Hannah.”
 end
 puts “Yes, Dr. Cham “ + verb + “ his niece Hannah.”

5. Them What Make the Rules 54

The block iterates (spins, cycles) through each of the Doctor’s actions. The verb variable changes with each

pass. In one pass, he’s sedating. In the next, he’s powdering. Then, he’s electrocuting.

So, the question is: after the block’s over, will he have rescued Hannah?
 Dr. Cham sedated his niece Hannah.
 Dr. Cham sprinkled his niece Hannah.
 Dr. Cham electrocuted his niece Hannah.
 Yes, Dr. Cham electrocuted his niece Hannah.

Blocks are allowed to see variables in the vicinity. The block noticed that the verb variable existed and it

overwrote its contents as it went along. When the block completed and its tiny life ended, the verb variable

came out a changed creature.

If a block uses a variable which hasn’t been used previously, though, then that variable vanishes at the end

of the block. The block’s scope closes and the variable goes with it. Say that verb wasn’t used before the

block.
 [‘sedated’, ‘powdered’, ‘electrocuted’].

 each do |verb|
 puts “Dr. Cham “ + verb + “ his niece Hannah.”
 end

 puts “Yes, Dr. Cham “ + verb + “ his niece Hannah.”

Pulls an error: undefined local variable or method `verb’. Poof.

It must be something difficult, even for a great scientist, to carry away the corpse of a young girl whose

dress is still starched and embroidered, but whose mouth is darkly clotted purple at the corners. In Dr.

Cham’s journal, he writes that he was tormented by her ghost, which glistened gold and scorched lace. His

delusions grew and he ran from hellhounds and massive vengeful, angelic hands.

Only weeks later, he was gone, propelled from these regrets, vanishing in the explosion that lifted him from

the planet.

And even as you are reading this now, sometime in these moments, the bell jar craft of our lone Dr. Cham

touched down upon a distant planet after a sixty year burn. As the new world came into view, as the

curvature of the planet widened, as the bell jar whisked through the upset heavens, tearing through sheets

of aurora and solar wind, Dr. Cham’s eyes were shaken open.

What you are witnessing is the landing of Dr. Cham on the planet Endertromb. From what I can gather, he

why’s (poignant) guide to ruby

55

landed during the cusp of the Desolate Season, a time when there really isn’t much happening on the planet.

Most of the inhabitants find their minds locked into a listless hum which causes them to disintegrate into

just vapid ghosts of one-part-wisdom and three-parts-steam for a time.

My modest grasp of the history and climate of Endertromb has been assembled from hanging around my

daughter’s organ instructor, who grew up on the planet.

I frequently drill my daughter’s organ instructor in order to ensure that he can keep appointments

adequately. That he can take house calls at odd hours and promptly answer emergency calls. When he

finally revealed to me that he was an alien whose waking day consisted of five-hundred and forty waking

hours, I was incredibly elated and opened a contractual relationship with him which will last into 2060.

For three days (by his pocket watch’s account), Dr. Cham travelled the dark shafts of air, sucking the dusty

wind of the barren planet. But on the third day, he found the Desolate Season ending and he awoke to a

brilliant vista, decorated with spontaneous apple blossoms and dewy castle tiers.

2. A Castle Has Its Computers

Our intrepid Doctor set off for the alien castle, dashing through the flowers. The ground belted past his

heels. The castle inched up the horizon. He desired a stallion, but no stallion appeared. And that’s how he

discovered that the planet wouldn’t read his mind and answer his wishes.

As my daughter’s organ instructor explained it, however, the planet could read minds and it could

grant wishes. Just not both at the same time.

5. Them What Make the Rules 56

One day as I quizzed the organ maestro, he sketched out the following Ruby code on a pad of cheese-colored

paper. (And queer cheese smells were coming from somewhere, I can’t say where.)
 require ‘endertromb’
 class WishMaker

 def initialize
 @energy = rand(6)
 end

 def grant(wish)
 if wish.length > 10 or wish.include? ‘ ‘

 raise ArgumentError, “Bad wish.”
 end
 if @energy.zero?

 raise Exception, “No energy left.”
 end
 @energy -= 1

 Endertromb::make(wish)
 end
 end

This is the wish maker.

Actually, no, this is a definition for a wish maker. To Ruby, it’s a class definition. The code describes

how a certain object will work.

Each morning, the wish maker starts out with up to five wishes available for granting. A new WishMaker is

created at sun up.
 todays_wishes = WishMaker.new

The new method is a class method which creates a new, blank object. It also calls the object’s initialize

method automatically. In the WishMaker definition, you’ll see the initalize method, which contains a single

line of code: @ENERGy = rand(6).

The rand(6) picks a number between 0 and 5. This number will represent the number of wishes left in

the day. So, occassionally there are no wishes available from the wish maker.

The random number is assigned to an instance variable which is named @ENERGy. This instance variable

will be available any time throughout the class. The variable can’t be used outside the scope of the class.

In chapter three, we briefly looked at instance variables and decided to respect them as attributes. (The at

symbol could mean attribute.) Instance variables can used to store any kind of information, but they’re

most often use to store bits of information about the object represented by the class.

In the above case, each wish maker for the day has its own energy level. If the wish maker were a machine,

you might see a gauge on it that points to the energy left inside. The @ENERGy instance variable is going to

act as that gauge.
 todays_wishes = WishMaker.new
 todays_wishes.grant(“antlers”)

Okay, step back and ensure you understand the example here. The WishMaker class is an outline we’ve

laid out for how the whole magic wish program works. It’s not the actual genie in the bottle, it’s the

paperwork behind the scenes. It’s the rules and obligations the genie has to live by.

why’s (poignant) guide to ruby

57

It’s todays_wishes that’s the genie in the bottle. And here we’re giving it a wish to grant. Give us antlers,

genie. (If you really get antlers from this example, I don’t want to hear about it. Go leap in meadows with

your own kind now.)

In the last chapter, the drill was: Ruby has two halves.
• Defining things.
• Putting those things into action.

What are the actions in Ruby? Methods. And now, you’re having a lick of the definition language built-in to

Ruby. Method definitions using def. Class definitions using class.

At this point in your instruction, it’s easier to understand that everything in Ruby is an object.
 number = 5
 print number.next # prints ‘6’

 phrase = ‘wishing for antlers’
 print phrase.length # prints ‘19’

 todays_wishes = WishMaker.new
 todays_wishes.grant(“antlers”)

And, consequently, each object has a class behind the scenes.
 print 5.class # prints ‘Integer’

 print ‘wishing for antlers’.class # prints ‘String’
 print WishMaker.new.class # prints ‘WishMaker’

Dr. Cham never saw the wish maker as he hustled across the landspace. It lay far beyond his landing in the

valley of Sedna. Down sheer cliffs stuffed with layers of thicket, where you might toss your wish (written

on a small 1” x 6” slip), down into the gaping void. Hopefully it will land on a lizard’s back, sticking to its

spindly little horn.

And let’s say your wish makes it that far. Well, then, down the twisted wood goes the skinny salamander,

scurrying through the decaying churches which had been pushed over that steep canyon ledge once and

for all. And the expired priest inside, who weathered the fall as well, will kill the little amphibian—strangle

it to death with a blessed gold chain—and save it for the annual Getting To Know You breakfast. He’ll step

on your precious little wish and, when the thieves come, that slip will still be there, stuck on his sole. Of

course, the thieves’ preferred method of torture is to cut a priest in thin deli-shaved slices from top to

bottom. Who can cull evidence from that? And when they chop that last thin slice of shoe sole, they’ll have

that rubber scalp in hand for good luck and good times. But they canoe much too hard, these thieves.

They slap their paddles swiftly in the current to get that great outboard motor mist going. But the shoe sole

is on a weak chain, tied to one man’s belt. And a hairy old carp leaps, latches on to that minute fraction

of footwear. And the thieves can try, but they don’t see underwater. If they could, they’d see that mighty

cable, packed with millions of needly fiber optics. Indeed, that fish is a peripheral plugged right into

the core workings of the planet Endertromb. All it takes is one swallow from that fish and your wish

is home free!

And that’s how wishes come true for children in this place.

Once my daughter’s organ instructor had drawn up the class for the wish maker, he then followed with a

5. Them What Make the Rules 58

class for the planet’s mind reader.
 require ‘endertromb’

 class MindReader
 def initialize
 @minds = Endertromb::scan_for_sentience

 end
 def read
 @minds.collect do |mind|

 mind.read
 end
 end
 end

Much as you’ve seen before, the initalize happens when a new MindReader object is created. This initialize

gathers scans the planet for mindshare. It looks like these minds are stored in an array, since they are later

iterated over using the collect method.

Both the wish maker and the mind reader refer to a class named Endertromb. This class is stored in a

file endertromb.rb, which is loaded with the code: require ‘endertromb’. Often you’ll use other classes to

accomplish part of your task. Most of the latter half of this book will explore the wide variety of helpful

classes that can be loaded in Ruby.

Dr. Cham Ventures Inside
But as Dr. Cham neared the castle, although the planet was aware of his thoughts, sensing his wonderment

and anticipation, all Dr. Cham felt was deadness. He tromped up the steps of its open gate and through the

entrance of the most beautiful architecture and was almost certain it was deserted.

For a while he knocked. Which paid off.

He watched the baby whale rise like a determined balloon. He marvelled at his first alien introduction and

felt some concern that it had passed so quickly. Well, he would wait inside.

As he stepped through the castle door, he felt fortunate that the door hadn’t been answered by a huge eagle

with greedy talons, eager to play. Or a giant mouse head. Or even a man-sized hurricane. Just a tubby

little choo-choo whale.

“Not a place to sit down in this castle,” he said.

At first, he had thought he had just entered a very dim hallway, but as his eyes adjusted, he saw the entrance

why’s (poignant) guide to ruby

59

extended into a tunnel. The castle door had opened right into a passage made of long, flat slabs of rock.

Some parts were congruous and resembled a corridor. Other parts narrowed, and even tilted, then finally

tipped away out of view.

The passage was lit by small doorless refrigerators, big enough to hold an armful of cabbage, down by

his feet. He peered inside one, which was hollow, illuminated along all sides, and turning out ice shards

methodically.

He pawed the ice chips, which clung dryly to his fingertips, and he scrubbed his hands in the ice. Which left

some muddy streaks on his hands, but satisfied a small part of his longing to bathe. How long had it been?

Ten years? Thirty?

Along the passage, long tubes of cloth cluttered some sections. Later, bright pixel matter in porcelain

scoops and buckets.

He happened upon a room which had been burrowed out of the tunnel which had a few empty turtle shells

on the ground and a large illuminated wall. He stared into the room, bewildered. What could this be? In

one state of mind, he thought of having a seat on a shell. This could be the entrace at last, some kind of

receiving room. On the other hand, spiders could pour out of the shell’s hollow when he sat. He moved on.

Meal in a Castle’s Pocket
As he journeyed along the passageways (for the central tunnel forked and joined larger, vacuous caverns),

he picked up themes in some locations. Groups of rooms infested with pumping machinery. Cloth and vats

of glue dominated another area. He followed voices down a plush, pillowed cavity, which led him to a dead

end: a curved wall with a small room carved at eye-level.

He approached the wall and, right in the cubby hole, were two aardvarks eating at a table.

They gazed at him serenely, both munching on some excavated beetle twice their size, cracked open and

frozen on its back on the table.

“Hello, little puppets,” he said, and they finished their bites and kept looking with their forks held aloof.

“I wish my niece Hannah were here to meet you,” he told the attentive miniature aardvarks. “She’d think

you were an intricate puppet show.” He peered in at the dining area, shelves with sets of plates, hand

towels. Half of a tiny rabbit was jutting out from the top a machine, creamy red noodles were spilling out

underneath it. A door at the back of the room hung ajar. Dr. Cham could see a flickering room with chairs

and whirring motors through the door.

“Any child would want this dollhouse,” he said. “Hannah, my niece, as I mentioned, she has a wind-up doll

that sits at a spindle and spins yarn. It’s an illusion, of course. The doll produces no yarn at all.”

One of the aardvarks opened a trapdoor in the floor and pressed a button down inside, which lit. Then, a

small film projector slowly came up on a rod. The other aardvark sat and watched Dr. Cham.

“But Hannah still reaches down into the dollhouse and collects all the imaginary yarn into a bundle. Which

5. Them What Make the Rules 60

she takes to her mother, my sister, who is very good at humoring Hannah. She sews a dress to the doll’s

dimensions, which Hannah takes back to the doll.

“And she tells the doll, ‘Here, look, your hard work and perserverance has resulted in this beautiful dress.

You can now accept the Chief of Police’s invitation to join him tonight at the Governor’s Mansion.’ And she

has a doll in a policeman’s uniform who plays the part of the Chief. He’s too scrawny to be an actual Chief,

that would require quite a bit of plastic.”

The aardvark responsible for the film projector loaded a reel and aimed the projector at the back wall. The

film spun to life and the aardvark took a seat. A green square appeared on the wall. The attentive aardvark

stared at Dr. Cham still.

“Your films are coloured,” said Dr. Cham. “What a lovely, little life.”

The film played on: a blue square. Then, a red circle. Then, an orange square. The attentive aardvark

turned away, watched the screen change to a pink triangle, and both aardvarks resumed eating.

A purple star. A red square. With quietness settling, Dr. Cham could hear notes droning from the

projector. Like a slow, plodding music box trying to roll its gears along the train tracks.

“Yes, enjoy your supper,” said Dr. Cham and he politely tipped his head away, marching back up the path

he’d taken.

Another Dead End Where Things Began
He found himself lost in the castle’s tunnels. Nothing looked familiar. He wasn’t worried much, though.

He was on another planet. He would be lost regardless.

He wound through the tunnels, attempting to recall his paths, but far too interested in exploring to keep

track of his steps. He followed a single tunnel deep, down, down, which slanted so steeply that he had to

leap across ledges and carefully watch his footholds. The gravity here seemed no different than Earth. His

legs were pulled into slides just as easily.

Although he had no absolute way of knowing where he was, he felt certain that he had left the castle’s

boundaries. This deep, this long of a walk. It had been an hour since he’d entered through the door.

And, as the tunnel wound back up, he was sure that he would emerge into a new dwelling, perhaps even a

manhole which he could peek out from and see the castle. Perhaps he shouldn’t have come so far down this

route. He hoped nothing was hibernating down here.

The tunnel came to a stop. A dark, dead end.

why’s (poignant) guide to ruby

61

He had time. So he read the book. He read of the foxes and their pursuit of the porcupine who stole their

pickup truck. He read of the elf and the ham. He saw the pictographs of himself and found he could really

relate to his own struggles. He even learned Ruby. He saw how it all ended.

Were I him, I couldn’t have stomached it. But he did. And he pledged in his bosom to see things out just as

they happened.

On the computer monitor, Dr. Cham saw the flashing irb prompt. Like Dr. Cham, you might recognize the

irb prompt from The Tiger’s Vest (the first expansion pak to this book, which includes a basic introduction

to Interactive Ruby.)

Whereas he had just been exploring tunnels by foot, he now explored the machine’s setup with the prompt.

He set the book back where he had found it. He didn’t need it anymore. This was all going to happen

whether he used it or not.

He started with:
 irb> Object::constants

 => [“Marshal”, “String”, “Dir”, “LoadError”, “Float”, ... and so on]

This command lists all the top-level constants. Classes are also listed as constants, so this list can be great

to see what’s loaded into Ruby at any time.

He scanned the list for anything unfamiliar. Any classes which didn’t come with Ruby. Marshal, String,

Dir, LoadError, Float. Each of those came with Ruby.

But further down the list:
 ... “Struct”, “Values”, “Time”, “Elevator”, “Range” ...

Elevator? Exactly the kind of class to poke around with. He had a go.
 irb> Elevator::methods
 => [“method”, “freeze”, “allocate”, ... another long list ...]

 irb> Elevator::class_variables
 => [‘@@diagnostic_report’, ‘@@power_circuit_active’, ‘@@maintenance_password’]

 irb> Elevator::constants
 => []

Looks like the Elevator class had plenty of methods. Most of these looked like they were the same

methods every object has in Ruby. For example, method, freeze and allocate come with every class in Ruby.

5. Them What Make the Rules 62

(Elevator::freeze would keep the Elevator class from being changed. Elevator::allocate would make

a new Elevator object without calling the initialize method.)

The class_variables were interesting to Dr. Cham. This elevator appeared genuine. But no available

constants. This tells us there are no classes nested inside the Elevator class.

He tried to create an Elevator object.
 irb> e = Elevator::new
 ArgumentError: wrong number of arguments (0 for 1), requires a password

 from (irb):2:in `initialize’
 from (irb):2:in `new’
 from (irb):2

 from :0

He tried a few passwords.
 irb> e = Elevator::new(“going up”)

 AccessDeniedError: bad password
 irb> e = Elevator::new(“going_up”)

 AccessDeniedError: bad password
 irb> e = Elevator::new(“stairs_are_bad”)

 AccessDeniedError: bad password
 irb> e = Elevator::new(“StairsAreBad”)

 AccessDeniedError: bad password

That was useless. Oh, wait! The maintenance password. Listed in the class_variables.
 irb> Elevator::maintenance_password
 NoMethodError: undefined method `maintenance_password’ for Elevator:Class
 from (irb):1
 from :0

Hmm. Instance variables are only available inside an object. And class variables are only available inside a

class. How to get at that password?
 irb> class Elevator
 irb> def Elevator.maintenance_password

 irb> @@maintenance_password
 irb> end
 irb> end
 => nil

 irb> Elevator::maintenance_password
 => “stairs_are_history!”

Alright! He got the password. Did you see that?

He added a class method to the Elevator class. Isn’t that great how you can start a new class definition

for Elevator and Ruby just adds your changes to the existing class definition?

Class methods are usually called with the double colon. But, a period is fine as well. Since Elevator

is a class itself, Ruby will figure that if you call Elevator.maintenance_password, you’re calling a class

method. The double colon simply helps make class methods obvious to the reader.

And justly so. Class methods are a bit unusual. Normally you won’t want to store information directly

inside of a class. However, if you have a bit of information that you need to share among all objects

of a class, then you have a good reason to use the class for storage. It’s understandable that the

why’s (poignant) guide to ruby

63

@@MAINTENANCE_PASSWORD would be stored in the

class, instead of in each separate object. This way,

the objects can simply reach up into the class and

see the shared password.

Here’s probably how the password protection works.
 class Elevator
 def initialize(pass)
 raise AccessDeniedError, “bad password” \
 unless pass.equals? @@maintenance_password

 end
 end

Passwording a class like this is pointless, since

anything in Ruby can be altered and overwritten

and remolded. Dr. Cham had the password and

ownership of the elevator is his.
 irb> e = Elevator.new(“stairs_are_history!”)

 #<Elevator:0x81f12f4 @level=4>
 irb> e.level = 1

Dr. Cham was standing right there when the

elevator doors, off behind the computer terminal,

opened for him. With an exasperated sense of

accomplishment and a good deal of excitement

surrounding all of the events that lie ahead, he

stepped into the elevator and pressed 4.

3. The Continued Story
of My Daughter’s Organ
Instructor
I know you may be alarmed to hear that I have a

daughter. You think my writing is indicative of a

palsied or infantile mind. Well, please rest. I don’t

have a daughter. But I can’t let that stop me from

sorting out her musical training.

As I was related these elaborate histories of the

planet Endertromb, I found myself wandering

through hallways, running my fingertips along the

tightly buttoned sofas and soaking myself in the

saturated bellowings of the pipes, as played by my

daughter’s organ instructor. His notes resounded

sidebar!

An Evening of Unobstructed
Voltage
I dug up this article from The Consistent Reminder, a

Connecticut newspaper which ran the four star review of Dr.

Cham. Midgie Dare, the book reviewer who suddenly opened

her critical eye to anything tangible, praised the Doctor for

his manners and innovations in the very same daily edition

that she defamed cantaloupe and docked Manitoba for having

crackly telephone service.

I got a kick out of the end of her article. Here you go.

He dismounted his horse with unquestionable care for
anyone who might be in the vicinity. Attentive of all sides,
he lowered himself from the saddle gently, slowing to a
pace which must be measured in micrometers per second
to be appreciated.

Those of us in his company found ourselves with maws
agape, watching his boot touch down upon the ground.
So precise and clean a step that it seemed it would never
meet the earth, only hover slight above it. Then, before the
landing had actually registered with any of us, we were
off to the cuisine, whisked away in the shroud of gaiety
that was always right in front of Harold Cham, always
just behind him, and most especially concentrate directly
in his own luminary self.

He also carried loosely at his side a capitally ignorant
statesman’s daughter, who spared us no leave from her
constant criticisms of atheists and railway routes.

“At home, my efforts to light a candle were trounced upon
by further train rumblings, which thrusted the match in
my hand nearer the curtains!” She derided Dr. Cham for
his waning grip on her forearm and became jealous when
he was able to tune into a pleasurable woman’s voice on
the radio once we returned to the residence.

The dusk did settle, however, and we found ourselves in
a communal daze beneath the thick particles of cotton
drift that wafted through the polished piano room, quite
entertained by the Afternoon Nap Program, which
played their phonograph so quietly at the station that
we could only hear the scratching of dead Napoleon’s
sleeves across the bedsheets. I felt a great shriek inside
me at the thought! Still, on yonder chairs, the two lovers
kept an abrupt distance between themselves and I felt
encompassed by Dr. Cham’s warm gaze and his playful
tip of the sherry glass.

sidebar!

5. Them What Make the Rules 64

so deep and hollow in the walls of his manor that I began to casually mistake them for an ominous silence,

and found it even easier to retreat into deep space with my thoughts. To think upon the ancient planet and

its darker philosophies: its flesh temples, tanned from the dermal remains of its martyrs; its whale cartels,

ingesting their enemies and holding them within for decades, dragging them up and down the staircases

of ribs; its poison fogs and its painful doorways; and, the atrocious dynasties of The Originals, the species

which claims fathership to all of the intellegent beings across the universe.

But, eventually, I’d hear those pipes of a higher octave sing and I’d be back in the very same breezy

afternoon where I’d left.

How interesting that even the breeze of our planet is quite a strange thing to some outsiders. For he had

also told me of the travellers from Rath-d, who ventured to Earth five centuries ago, but quickly dissipated

in our air currents since they and their crafts and their armor were all composed of charcoal.

I had sat at the organ, listening to his faint tales of his colony, while he punctuated his symphonies to

greater volumes and the story would disappear for awhile, until the coda came back around. He spoke of

he and his brothers piling into the hollow of his mother’s tail and tearing the waxy crescent tissue from the

inner wall. Juicy and spongy and syrupy soap which bleached their mouths and purged their esophagus as

it went down. They chewed and chomped the stuff and it foamed. After they ate, they blew bubbles at each

other, each bubble filled with a dense foam, which they slept upon. And early in the morning, when mother

opened her tail again, she watched serenely as her babies lay cradled in the stew of dark meatballs and

sweet, sticky froth.

He spelled out all the tastes of Endertromb. Of their salmon’s starchy organs, which cooked into a pasta,

and its eyes which melted into rich cream. Of their buttermelon with tentacles. And he was just beginning

to appreciate the delicacies as a child, only to be lifted from a schoolyard by a pair of upright pygmy

elephants who reached at him, through the heavens, and snatched upon his collar with a vast length of

crane.

They transplanted him on Earth, led him from their craft, trumpeting their snouts loudly for the city of

Grand Rapids to hear, then left, weeping and embracing each other.

“But, strangely (em-pithy-dah), I learned upon, played upon (pon-shoo) the organs on my home (oth-rea)

planet,” he said.

My daughter’s organ instructor speaks these extra words you see in parentheses. Who knows if they are

from his native tongue or if they are his own soundful hiccups. He keeps another relic from Endertromb as

well: he has twelve names.

“No, (wen-is-wen),” he said. “I have one name (im-apalla) which is said (iff) many-many different ways.”

I call him Paij-ree in the morning and Paij-plo in the later evening. Since it is day as I write, I will call him

Paij-ree here.

why’s (poignant) guide to ruby

65

Mumble-Free Earplugs

So I told Paij-ree, “Paij-ree, I am writing a book. To teach the world Ruby.”

“Oh, (pill-nog-pill-yacht) nice,” he said. He’s known Ruby longer than I have, but still: I will be my

daughter’s Ruby instructor.

And I said, “Paij-ree, you are in the book. And the stories of your planet.” I talk to him like he’s E.T. I don’t

know why. Just like how I said next, “And then maybe someday you can go home to your mom and dad!”

To which he said, “(pon-shoo) (pon-shoo) (em-pithy-dah).” Which is his way of speaking out loud his

silence and awe.

He wanted to see what I’d written, so I showed him this short method I’ve written for you.
 def wipe_mutterings_from(sentence)
 while sentence.include? ‘(‘

 open = sentence.index(‘(‘)
 close = sentence.index(‘)’, open)

 sentence[open..close] = ‘‘ if close

 end
 end

“Can you see what this does, Paij-ree? Any old Smotchkkiss can use this method to take all the incoherent

babblings out of your speaking,” I said.

And I fed something he said earlier into the method.
 what_he_said = “But, strangely (em-pithy-dah),
 I learned upon, played upon (pon-shoo) the
 organs on my home (oth-rea) planet.”
 wipe_mutterings_from(what_he_said)
 print what_he_said

And it came out as a rather plain sentence.
 But, strangely ,
 I learned upon, played upon the

 organs on my home planet.

“You shouldn’t use that (wary-to) while loop,” he said. “There are lovelier, (thopt-er), gentler ways.”

In the wipe_mutterings_from method, I’m basically searching for opening parentheses. When I find one,

5. Them What Make the Rules 66

I scan for a closing paren which follows it. Once I’ve found both, I replace them and their contents with an

empty string. The while loop continues until all parentheses are gone. The mutterings are removed and

the method ends.

“Now that I look at this method,” I said. “I see that there are some confusing aspects and some ways I

could do this better.” Please don’t look down on me as your teacher for writing some of this code. I figure

that it’s okay to show you some sloppy techniques to help you work through them with me. So let’s.

Okay, Confusing Aspect No. 1: This method cleans a string. But what if we accidentally give it a File?

Or a number? What happens? What if we run wipe_mutterings_from(1)?

If we give wipe_mutterings_from the number 1, Ruby will print the following and exit.
 NoMethodError: undefined method `include?’ for 1:Fixnum
 from (irb):2:in `wipe_mutterings_from’

 from (irb):8

What you see here is a rather twisted and verbose (but at times very helpful) little fellow called the

backtrace. He’s a wound-up policeman who, at the slightest sign of trouble, immediately apprehends any

and all suspects, pinning them against the wall and spelling out their rights so quickly that none can quite

hear it all. But it’s plain that there’s a problem. And, of course, it’s all a big misunderstanding, right?

When Ruby reads you these Miranda rights, listen hardest to the beginning. The first line is often all you

need. In this first line is contained the essential message. And in the above, the first line is telling us that

there is no include? method for the number 1. Remember, when we were talking about the reverse method

in the last chapter? Back then, I said, “a lot of methods are only available with certain types

of values.” Both reverse and include? are methods which work with strings but are meaningless and

unavailable for numbers.

To be clear: the method tries to use to the number. The method will start with sentence set to 1. Then, it

hits the second line: while sentence.include? ‘(‘. Numbers have no include? method. Great, the backtrace

has shown us where the problem is. I didn’t expect anyone to pass in a number, so I’m using methods that

don’t work with numbers.

See, this is just it. Our method is its own little pocket tool, right? It acts as its own widget independent

of anything else. To anyone out there using the wipe_mutterings_from method, should they pass in a

number, they’ll be tossed this panic message that doesn’t make sense to them. They’ll be asked to poke

around inside the method, which really isn’t their business. They don’t know their way around in there.

Fortunately, we can throw our own errors, our own exceptions, which may make more sense to someone

who inadvertantly hands the wrong object in for cleaning.
 def wipe_mutterings_from(sentence)
 unless sentence.respond_to? :include?

 raise ArgumentError,
 “cannot wipe mutterings from a #{ sentence.class }”
 end
 while sentence.include? ‘(‘

 open = sentence.index(‘(‘)
 close = sentence.index(‘)’, open)

why’s (poignant) guide to ruby

67

 sentence[open..close] = ‘‘ if close

 end
 end

This time, if we pass in a number (again, the number 1), we’ll get something more sensible.
 ArgumentError: cannot wipe mutterings from a Fixnum

 from (irb):3:in `wipe_mutterings_from’
 from (irb):12

The respond_to? method is really nice and I plead that you never forget it’s there. The respond_to? checks

any object to be sure that it has a certain method. It then gives back a true or false. In the above case,

the incoming sentence object is checked for an include? method. If no include? method is found, then we

raise the error.

You might be wondering why I used a symbol with respond_to?. I used a symbol :include? instead of a

string ‘include?’. Actually, either will work with respond_to?.

Usually symbols are used when you are passing around the name of a method or any other Ruby construct.

It’s more efficient, but it also catches the eye. The respond_to? asks Ruby to look inside itself and see if a

method is available. We’re talking to Ruby, so the symbol helps denote that. It’s not a big deal, Ruby just

recognizes symbols quicker than strings.

Now, Confusing Aspect No. 2: Have you noticed how our method changes the sentence?
 something_said = “A (gith) spaceship.”
 wipe_mutterings_from(something_said)
 print something_said

Did you notice this? In the first line of the above code, the something_said variable contains the string “A

(gith) spaceship.”. But, after the method invocation, on the third line, we print the something_said variable

and by then it contains the cleaned string “A spaceship.”.

How does this work? How does the method change the string? Shouldn’t it make a copy of the string

before changing it?

Yes, absolutely, it should! It’s bad manners to change strings like that. We’ve used gsub and gsub!

in the last chapter. Do you remember which of those two methods is a destructive method, which

changes strings directly?

Either we need to call this method wipe_mutterings_from! (as a courtesy to all the other good folks out

there that might use this method) or change the method to work on a copy of the string rather than the real

thing. Which is an easy change! We just need to dup the string.
 def wipe_mutterings_from(sentence)

 unless sentence.respond_to? :include?
 raise ArgumentError,
 “cannot wipe mutterings from a #{ sentence.class }”
 end

 sentence = sentence.dup
 while sentence.include? ‘(‘

 open = sentence.index(‘(‘)
 close = sentence.index(‘)’, open)

5. Them What Make the Rules 68

 sentence[open..close] = ‘‘ if close

 end
 sentence
 end

The dup method makes a copy of any object. Look at that line we added again on its own:
 sentence = sentence.dup

What a peculiar line of code. How does sentence become a copy of sentence? Does it erase itself? What

happens to the original sentence? Does it disappear?

Remember that variables are just nicknames. When you see sentence = “A (gith) spaceship.”, you see

Ruby creating a string and then giving that string a nickname.

Likewise, when you see sentence = sentence.dup, you see Ruby creating a new string and then giving that

string a nickname. This is handy inside your method because now sentence is a nickname for a new copy of

the string that you can safely use without changing the string that was passed into the method.

You’ll see plenty of examples of variable names being reused.
 x = 5
 x = x + 1

 # x now equals 6

 y = “Endertromb”
 y = y.length

 # y now equals 10

 z = :include?
 z = “a string”.respond_to? z

 # z now equals true

And, yes, sometimes objects disappear. If you can’t get to an object through a variable, then Ruby

will figure you are done with it and will get rid of it. Periodically, Ruby sends out its garbage

collector to set these objects free. Every object is kept in your computer’s memory until the garbage

collector gets rid of it.

Oh, and one more thing about dup. Some things can’t be dup’d. Numbers, for instance. Symbols (which

look like :death) are identical when spelled the same. Like numbers.

Also, some of the special variables: nil, true, false. These are things that Ruby won’t let you alter, so

there’s so point making a copy anyway. I mean, imagine if you could change false to be true. The whole

thing becomes a lie.

Perhaps Confusing Aspect No. 3 is a simple one.

I’m using those square brackets on the string. I’m

treating the string like it’s an Array or Hash. I can

do that. Because strings have a [] method.

When used on a string, the square brackets will

extract part of the string. Again, slots for a forklift’s

sidebar!

An Excerpt from The Scarf Eaters
(from Chapter VII: When Push Comes to Shove—or Love.)

“Never say my name again!” screamed Chester, and with the

same gusto, he turned back to the File > Publish Settings…

dialog to further optimize his movie down to a measley 15k.

sidebar!

why’s (poignant) guide to ruby

69

prongs. The string is a long shelf and the forklift is pulling out a slab of the string.

Inside the brackets, we pass the index. It’s the label we’ve placed right between the prongs where the

worker can see it. When it comes to strings, we can use a variety of objects as our index.
 str = “A string is a long shelf of letters and spaces.”
 puts str[0] # prints 65 (the character code for an ‘A’)

 puts str[0..-1] # prints ‘A string is a long shelf of letters and spaces.’
 puts str[1..-2] # prints ‘ string is a long shelf of letters and spaces’

 puts str[1, 3] # prints ‘A s’
 puts str[‘shelf’] # prints ‘shelf’

Alright, the last Confusing Aspect No. 4: this method can be sent into an endless loop. You can give this

method a string which will cause the method to hang and never come back. Take a look at the method. Can

you throw in a muddy stick to clog the loop?
 def wipe_mutterings_from(sentence)

 unless sentence.respond_to? :include?
 raise ArgumentError,
 “cannot wipe mutterings from a #{ sentence.class }”
 end

 sentence = sentence.dup
 while sentence.include? ‘(‘

 open = sentence.index(‘(‘)
 close = sentence.index(‘)’, open)

 sentence[open..close] = ‘‘ if close

 end
 sentence
 end

Here, give the muddy stick a curve before you jam it.
 muddy_stick = “Here’s a (curve.”
 wipe_mutterings_from(muddy_stick)

Why does the method hang? Well, the while loop waits until all the open parentheses are gone before it

stops looping. And it only replaces open parentheses that have a matching closing parentheses. So, if no

closing paren is found, the open paren won’t be replaced and the while will never be satisfied.

How would you rewrite this method? Me, I know my way around Ruby, so I’d use a regular expression.
 def wipe_mutterings_from(sentence)
 unless sentence.respond_to? :gsub

 raise ArgumentError,
 “cannot wipe mutterings from a #{ sentence.class }”
 end
 sentence.gsub(/\([-\w]+\)/, ‘‘)

 end

Do your best to think through your loops. It’s especially easy for while and until loops to get out of hand.

Best to use an iterator. And we’ll get to regular expressions in time.

In summary, here’s what we’ve learned about writing methods:
• Don’t be surprised if people pass unexpected objects into your methods. If you absolutely can’t use what they give

you, raise an error.
• It’s poor etiquette to change objects your method is given. Use dup to make a copy. Or find a method like gsub that

automatically makes a copy as it does its job.
• The square brackets can be used to lookup parts inside any Array, Hash or String objects, as these objects

5. Them What Make the Rules 70

provide a [] method. Also, since these objects provide a []= method, the square brackets can be used in assignment
(on the left-hand side of the equals sign) to change the parts of those objects.

• Watch for runaway loops. Avoid while and until if you can.

The Mechanisms of Name-Calling

Forthwith there is a rustling in the trees behind Paij-ree’s house and it turns out to be a man falling from

the sky. His name is Doug and he sells cats.

So, just as he comes into to view, when his shadow (and the shadows of the cats tied to his foot) obscures

the bird on the lawn that we’re trying to hit with a racquetball, as he’s squeezing a wisp of helium from his

big balloon, we shout, “Hello, Doug!”

And he says, “Hello, Gonk-ree! Hello, Why!”

Paij-ree checks his pockets to be sure he has the dollar-twenty-seven he’ll need in order to buy the three cats

he’ll need to keep the furnace stoked and the satellite dish turning. These cats generate gobs of static once

Paij-ree tosses them in the generator, where they’ll be outnumbered by the giant glass rods, which caress

the cats continually—But, wait! Did you see how the cat broker called him Gonk-ree?

And he calls him Gonk-ree in the morning and Gonk-plo at night.

So the suffix is definitely subject to the sunlight. As far as I can tell, the prefix indicates the namecaller’s

relationship to Paij-ree.
 class String

 # The parts of my daughter’s organ

 # instructor’s name.
 @@syllables = [
 { ‘Paij’ => ‘Personal’,

why’s (poignant) guide to ruby

71

 ‘Gonk’ => ‘Business’,
 ‘Blon’ => ‘Slave’,

 ‘Stro’ => ‘Master’,
 ‘Wert’ => ‘Father’,

 ‘Onnn’ => ‘Mother’ },
 { ‘ree’ => ‘AM’,

 ‘plo’ => ‘PM’ }
]

 # A method to determine what a
 # certain name of his means.
 def name_significance
 parts = self.split(‘-’)

 syllables = @@syllables.dup
 signif = parts.collect do |p|

 syllables.shift[p]
 end
 signif.join(‘ ‘)

 end

 end

Now I’ve gone beyond just showing you sloppy code. Here be a grave debauchery and a crime against

nature. A crime most languages won’t allow you to commit. We’re changing the String, one of the core

classes of Ruby!

“I know this is a bit dangerous,” I said, when I passed this one under Paij-ree’s nose. “I hope nobody gets

hurt.”

“Every Smotchkkiss must taste what this (kep-yo-iko) danger does,” he said. “Dogs and logs and swampy

bogs (kul-ip), all must be tasted.” And he took a swig of his Beagle Berry marsh drink.

So what is it that I’m adding to the String class? Two things: a class variable and a method. A normal

instance method.

I like to look at the at symbol as a character meaning attribute. The double at stands for attribute

all. A class variable. All instances of a class can look at this variable and it is the same for all of them. The

@@SyLLABLES variable is an Array that can now be used inside the String class.

The new method is name_significance and this new method can be used with any string.

print “Paij-ree”.name_significance prints out Personal AM.

As you can see, Paij-ree is a personal name. A name friends use in the early hours.

Make sure you see the line of code which uses self. This is a special variable, a variable which represents

the object whose method you are calling. To simplify things a bit, let’s try making a method which breaks

up a string on its dashes.
 class String
 def dash_split
 self.split(‘-’)

 end
 end

Again, here’s a method which can be used with any string.

5. Them What Make the Rules 72

“Gonk-plo”.dash_split return the Array [‘Gonk’, ‘plo’].

Using self marks the beginning of crossing over into many of the more advanced ideas in Ruby. This is

definition language. You’re defining a method, designing it before it gets used. You’re preparing for the

existence of an object which uses that method. You’re saying, “When dash_split gets used, there will be a

string at that time which is the one we’re dash-splitting. And self is a special variable which refers to that

string.”

Ruby is a knockout definition language. A succulent and brain-splitting discussion is coming your way

deeper in this book.

Most often you won’t need to use self explicitly, since you can call methods directly from inside other

method definitions.
 class String

 def dash_split; split(‘-’); end
 end

In the name_significance method, find the loop. Learning about Array#collect is essential. Let’s look

close.
 signif = parts.collect do |p|

 syllables.shift[p]
 end

The parts Array contains the separated name. [‘Paij’, ‘plo’], for instance. We’re iterating through each item

in that Array with collect. But collect steps beyond what each does. Like each, collect slides each item down

the chute as a block variable. And then, at the end of the block, collect keeps the answer the block

gives back and adds it to a new Array. The collect method is the perfect way of building a new Array

which is based on the items in an existing Array.

Doug has three cats for sale. One is twelve cents, one is sixty-three cents, one is nine cents. Let’s see how

much each cat would cost if we added a 20% tip.
 catsandtips = [0.12, 0.63, 0.09].collect { |catcost| catcost + (catcost * 0.20) }

I say Paij-ree’s property is a very charming section of woods when it’s not raining cats and Doug. For many

days, Paij-ree and I camped in tents by the river behind his house, subsisting on smoked blackbird and

whittling little sleeping indians by the dusklight. On occassion he would lose a game of spades and I knew

his mind was distracted, thinking of Endertromb. All of this must have been stirring inside of him for

sometime. I was the first ear he’d ever had.

“I just came from Ambrose,” I said. “Sort of my own underground home, a place where elves strive to

perfect animals.”

He mumbled and nodded. “You can’t be (poth-in-oin) part of (in) such things.”

“You think we will fail?”

“I (preep) have been there before,” he said. And then, he spoke of the Lotteries.

why’s (poignant) guide to ruby

73

4. The Goat Wants to Watch a Whole Film

The elevator had opened into a green room full of shelves and file cabinets. Reels of tape and film canisters

and video tape everywhere. Dr. Cham hadn’t a clue what most of it was. All he saw was a big, futuristic

mess.

He called out again, stumbling through alleys of narrow shelves, “Hello-o-o?? I’m looking for intellegent

life! I’m a space traveller!” He tripped when his foot slid right into a VCR slot. “Any other beings I can

communicate with?”

Hand cupped around mouth, he yelled, “Hello-o-o?”

“Crying out loud.” The sleepy goat came tromping down the aisle.

5. Them What Make the Rules 74

“I hate that book,” said the goat. “I believe the author is disingenuous.”

“Really?” asked Dr. Cham.

“I’m sure it’s all true. It’s just so heavily embellished. I’m like: Enough already. I get it. Cut it out.”

“I’m not quite sure what to make of it,” said the Doctor. “It seems like an honest effort. I actually wrote

something in Ruby back there.”

“It doesn’t give goats a very good name,” said the goat.

“But you are the only goat in the book,” said the Doctor.

“And I’m totally misquoted.”

The goat closed his mouth and Dr. Cham held his heart.

“I’m actually very literate,” said the goat. “Albeit, more recently, I’ve switched to movies. I love foreign

films. One of my relatives just brough back Ishtar from your planet. Wow, that was excellent.”

“I haven’t been to my planet in a long time. It would be difficult to consider it my home at this stage.”

“Well, Warren Beatty is delightful. His character is basically socially crippled. He actually tries to kill

himself, but Dustin Hoffman sits in the window sill and starts crying and singing this totally hilarious

heartbreak song. I’ve got it here, you should see it.”

“Can I get something to eat?” asked the Doctor. And he still felt filthy.

“How about we watch a film and you can have a buttermelon with tentacles?” said the goat.

why’s (poignant) guide to ruby

75

So, they worked their way back toward the goat’s

projector. Back by the freezer locker, they sat on

a giant rug and broke off the appendages of frozen

buttermelons. The shell was solid, but once it

cracked, rich fruit cream was in abundance. Sweet

to taste and a very pleasant scent.

“First film, you’ve got to see,” said the goat. “Locally

filmed and produced. I’m good friends with the

lady who did casting. Dated her for awhile. Knew

everyone who was going to play the different roles

long before it was announced.”

The goat set the projector by Dr. Cham. “I’ve got

the music on the surround sound. You can man the

knob.”

sidebar!

 we want a tambourine!
 /

 | we want all a tambourine!
 | /
 __ |
 / o o __/__/_

 /. \ o o ____
 /’ ----/ \
 _____ / ‘ / /.\\ #------/

 / / / \\
 / ///
 /so \
 /\ \me time\\..
 /pp/ \s these pictur\\

 /es/ \don’t w\ \ork out\
 *** *** right but i
 think this time
 they did
 ooo o
 oo
 o
 o
 {o}
 ^

sidebar!

5. Them What Make the Rules 76

why’s (poignant) guide to ruby

77

Dr. Cham’s mind wandered at this point in the presentation, just as the land war mounted between the

two throngs of animal settlers. The details of their wars and campaigns continued to consume the spool of

transparent film that Dr. Cham was feeding through the projector.

War after war after war. The Sieging of Elmer Lake. The Last Stand of Newton P. Giraffe and Sons. Dog

Invasion of Little Abandoned Cloud. No animals died in these wars. Most often an attack consisted

of bopping another animal on the head. And they philipped each other’s noses. But, believe me, it was

humiliating.

Blasted crying shame. Things could have worked out.

The Birth of an Object
“Don’t worry,” said the goat, anxious to sway Dr. Cham’s attention back to the film. “Things do work out.”

In Ruby, the Object is the very center of all things. It is The Original.
 class ToastyBear < Object; end

The angle bracket indicates inheritance. This means that the new ToastyBear class is a new class based

on the Object class. Every method that Object has will be available in ToastyBear. Constants available

in Object will be available in ToastyBear.

But every object inherits from Object. The code…
 class ToastyBear; end

Is identical to…
 class ToastyBear < Object; end

Inheritance is handy. You can create species of objects which relate to each other. Often, when you’re

dissecting a problem, you’ll come across various objects which share attributes. You can save yourself work

by inheriting from classes which already solve part of that problem.

You may have a UnitedStatesAddress class which stores the address, city, state, and zip code for

someone living in the United States. When you start storing addresses from England, you could add a

UnitedKingdomAddress class. If you then ensure that both addresses inherit from a parent Address

class, you can design your mailing software to accept any kind of address.
 def mail_them_a_kit(address)

 unless address.is_a? Address
 raise ArgumentError, “No Address object found.”
 end

 print address.formatted
 end

Also, inheritance is great if you want to override certain behaviours in a class. For example, perhaps you

want to make your own slight variation to the Array class. You want to enhance the join method. But if you

change Array#join directly, you will affect other classes in Ruby that use Arrays.

So you start your own class called ArrayMine, which is based on The Original Array.

5. Them What Make the Rules 78

 class ArrayMine < Array

 # Build a string from this array, formatting each entry
 # then joining them together.
 def join(sep = $,, format = “%s”)

 collect do |item|
 sprintf(format, item)

 end.join(sep)
 end
 end

ArrayMine is now a custom Array class with its own join method. Array is the superclass of

ArrayMine. Every object has a superclass method where you can verify this relationship.
 irb> ArrayMine.superclass
 => Array

Perfect. We manage a hotel and we have an Array of our room sizes: [3, 4, 6]. Let’s get it nicely printed

for a brochure.
 rooms = ArrayMine[3, 4, 6]

 print “We have “ + rooms.join(“, “, “%d bed”) + “ rooms available.”

Which prints, “We have 3 bed, 4 bed, 6 bed rooms available.”

Dr. Cham was looking around for a bathroom, but archival video tape was everywhere. He eventually found

a place, it may have been a bathroom. It had a metal bin. More importantly, it was dark and out of eyesight.

While he’s in there, let me add that while The Originals slaughtered The Invaders to prove their rights as

First Creatures, the Ruby Object doesn’t have any such dispute. It is the absolute king Object the First.

Watch.
 irb> Class.superclass
 => Module

 irb> Kernel.class
 => Module
 irb> Module.superclass

 => Object
 irb> Object.superclass
 => nil

Even Class is an Object! See, although classes are the definition language for objects, we still call class

methods on them and treat them like objects occassionally. It may seem like a dizzying circle, but it’s truly

a very strict parentage. And it ensures that when you alter the Object, you alter everything in Ruby.

Which is impossibly scary and all-powerful and cataclysmic and awesome! Ruby does not restrict you,

my sister, my brother!

Between Class and Object, do you see Module? If Object is the king, the one who has sired every other

part of Ruby, then Module is the poor waifish nun, shielding and protecting all her little Ruby townspeople

children. (To complete the analogy: Class is the village school teacher and Kernel is the self-important

colonel.)

The whole point of Module’s existence is to give food and shelter to code. Methods can stay dry under

Module’s shawl. Module can hold classes and constants and variables of any kind.

why’s (poignant) guide to ruby

79

“But what does a Module do?” you ask. “How is it gainfully employed??”

“That’s all it does!!” I retort, stretching out my open palms in the greatest expression of futility known

to man. “Now hear me—for I will never speak it again—that Module Mother Superior has given these

wretched objects a place to stay!!”
 # See, here is the module -- where else could our code possibly stay?
 module WatchfulSaintAgnes

 # A CONSTANT is laying here by the doorway. Fine.
 TOOTHLESS_MAN_WITH_FORK = [‘man’, ‘fork’, ‘exposed gums’]

 # A Class is eating, living well in the kitchen.
 class FatWaxyChild; end

 # A Method is hiding back in the banana closet, God knows why.
 def timid_foxfaced_girl; {‘please’ => ‘i want an acorn please’}; end

 end

Now you have to go through Saint Agnes to find them.
 >> WatchfulSaintAgnes::TOOTHLESS_MAN_WITH_FORK
 => [“man”, “fork”, “exposed gums”]

 >> WatchfulSaintAgnes::FatWaxyChild.new
 => #<WatchfulSaintAgnes::FatWaxyChild:0xb7d2ad78>
 >> WatchfulSaintAgnes::instance_methods

 => [“timid_foxfaced_girl”]

Always remember that a Module is only an inn. A roof over their heads. It is not a self-aware Class and,

therefore, cannot be brought to life with new.
 >> WatchfulSaintAgnes.new
 NoMethodError: undefined method `new’ for WatchfulSaintAgnes:Module
 from (irb):2

St. Agnes has given up her whole life in order that she may care for these desperate bits of code. Please.

Don’t take that away from her.

If you wanted to steal from St. Agnes, though, I can help you. You can bring in a larger abbey to swallow up

the ministry of WatchfulSaintAgnes and then what is she left with?

For this you can use extend, which will pull all the methods from a module into a class or an object.
 >> class TheTimeWarnerAolCitibankCaringAndLovingFacility; end
 >> TheTimeWarnerAolCitibankCaringAndLovingFacility.extend WatchfulSaintAgnes

 >> TheTimeWarnerAolCitibankCaringAndLovingFacility::instance_methods
 => [“timid_foxfaced_girl”]

In truth, no one’s stolen from WatchfulSaintAgnes, only borrowed. The timid_foxfaced_girl now has

two addresses.

You gotta admit. The old abbey can get bought out a zillion times and that little fox-faced girl will still be

back in the banana closet wanting an acorn! Too bad we can’t feed her. She’s a method with no arguments.

When Dr. Cham came out refreshed, the filmstrip was a bit behind. But the goat hadn’t noticed, so the

Doctor advanced frames until it made some sense.

5. Them What Make the Rules 80

why’s (poignant) guide to ruby

81

So the invaders left the planet.

“This planet is decrepit,” said Dr. Cham. “The castle is nice. But inside it’s a disaster.”

“The whole castle look is a projection,” said the goat. “All the flowers and apple blossoms and the sky even.

It’s a low-resolution projection.”

“Yes? It is enchanting.”

“I guess.”

“That’s messed up!” said the goat. “That’s not the way the film ends! There’s no blood! What happened?

What happened? Did you screw up the knob, idiot?”

“Well, I don’t know,” said Dr. Cham. He turned the knob reverse and forward. Tapped the lens.

“Check the film! Check the film!”

Dr. Cham pulled out a length of film from the projection feed, melted and dripping from its end.

“Curse that! These projectors are quality! I’ve never had this happen. There’s no way.”

Hunting For a Voice
“I don’t think it was the projector,” said Dr. Cham. “Something flew across that screen and uttered a

blistering moan.”

“I don’t have any dupes of that movie,” said the goat somberly. “And that girl. That casting director. I

never see her anymore.”

Dr. Cham stood up and looked over the dumpy aisles of magnetic carnage, searching.

“Oh, hey, you should call that girl,” the goat went on. “You could talk to her, get an understanding. Tell her

about me. Don’t act like your my friend, just, you know, ‘Oh, that guy? Yeah, whatta maroon.’”

5. Them What Make the Rules 82

Dr. Cham spotted the doorway and exited.

The hallways were an entirely new world of mess. In the goat’s archives, the shelves had been messy. In

the hallway, shelves were completely tipped. Sinks were falling through the ceiling. The Doctor ventured

under the debris, kicking through plywood when necessary.

“You shouldn’t be out here,” said the goat. “You’re on someone else’s property at this point. A couple of

pygmy elephants own all this. They’re nasty guys. They’ll beat the crap outta you with their trunks. They

ball it up and just whack ya.”

Dr. Cham pushed a file cabinet out of his way, which fell through a flimsy wall, then through the floor of the

next room over. And they heard it fall through several floors after that.

“I’m trying to remember how it goes in the book,” said Dr. Cham, as he walked swiftly through the hall.

“That milky fog that swept across the projection. We find that thing.” He jiggled a door handle, broke it off.

Forged through the doorway and disappeared inside.

“You really get a kick out of beating stuff up, don’t you?” said the goat. “Walls, doors.” The goat headbutted

a wall. The wall shuddered and then laid still.

Then, it was quiet. And black.

The goat stayed put in the bleak hallway, expecting Dr. Cham to flip over a few desks and emerge, ready

to move on from the room he’d busted into. But Dr. Cham didn’t return, and the goat opted to share a

moment with the neglected wreckage left by his neighbors. Not that he could see at all. He could only hear

the occassional rustling of the piles of invoices and carbon copy masters and manila envelopes when he

shifted his legs.

The ground seemed to buckling right under the goat, as if the heaps of kipple around him were beginning to

slide toward his weight. He would be at the center of this whirlpool of elephant documentation. Would he

die of papercuts first? Or would he suffocate under the solid burial by office supplies?

A soft light, however, crept up to him. A floating, silver fish. No, it was a—was it scissors? The scissors grew

into a shimmering cluster of intellegent bread, each slice choking on glitter. But, no, it was hands. And an

Easter hat.

why’s (poignant) guide to ruby

83

In another room, Dr. Cham stood under the clear glass silently. The ceiling had abruptly gone transparent,

then starlight washed over his pants and jacket. He walked further to the room’s center in muted colors, lit

as softly as an ancient manuscript in its own box at the museum. More stars, more cotton clusters of fire,

unveiled as he came across the floor. And it peeked into view soon enough, he expected it to be larger, but it

wasn’t.

Earth. Like a painted egg, still fresh. He felt long cello strings sing right up against his spine. How could

that be called Peoplemud? Here was a vibrant and grassy lightbulb. The one big ball that had something

going for it.

He thought of The Rockettes. Actually, he missed The Rockettes. What a bunch of great dancers. He had

yelled something to The Rockettes when he saw them. Something very observant and flattering.

Oh, yes, while The Rockettes were spinning, arm in arm, he had yelled, “Concentric circles!” Which no one

else cared to observe.

And this thought was enough to feed Dr. Cham’s superiority complex. He wore a goofy smile as he retraced

his footsteps. He truthfully felt his genius coming through in such a statement. To realize the simplicity of

a circle was his. He reflected on it all the way back to the hallway.

Which I think is great. Adore yourself when you have a second.

“Oh, right,” said the goat. “Your niece. The niece you killed. I’m with ya now.”

For just a few moments, they all looked at each other. Just enough time for both Dr. Cham and the goat to

think: Oh, yeah. Hannah causes us a lot of trouble. She’s already talking about maple donuts.

“Does she start talking about maple donuts right away like that?” asked the goat.

“Yes, she does,” said the Doctor. “She brings it up to you, then she brings it up to me. She sees a maple

donut somewhere—I don’t quite remember where.”

“Do I see a real maple donut?” Hannah said. “I need a real one.”

“Okay, okay,” said the goat. “Yeah, I remember: here’s where she says that if she gets a real maple donut,

she’ll become a real person again. Because her real destiny was to own a bakery and you ruined that destiny

and now she’s trapped as a ghost.”

5. Them What Make the Rules 84

“Hey, that’s the truth!” Hannah yelped.

“It’s terrible that we must bear through this whole scene again,” said the Doctor. “The donuts are

immaterial. They should be left out altogether.”

“Man, I am having a hard time remembering all of this chapter,” said the goat. “I don’t even remember how

to get out of this hallway. I must have read that book like thirty times. Do we blast through a wall? Do we

scream until someone finds us?”

“We get Hannah to float through walls and she finds some kind of machine,” says Dr. Cham. “I have to

write a program—it all works out somehow.”

“But, you know what I’m saying?” said the goat. “I forget all the details. Especially the earlier chapters. I

mean I can remember the ending perfectly. It’s hard to sit through all this. The end is so much better.”

Dr. Cham folded his arms and teetered on a heel. “The porcupine.” He smiled greedily at the goat.

“Oh, totally. The porcupine is definitely who I want to meet,” said the goat. “I wonder what he does with all

that money when the book is over.”

Dr. Cham nodded respectfully. “I’m very excited to see him wearing slippers.”

“Those infernal slippers!” said the goat and he haw-hawed coarsely, a shower of saliva cascading from his

jaws.

Hannah’s mind rattled, waiting for this nonsense to break for a moment. She tipped her head on its side

and the rattle slid along the curve of her cranium. The little noise died away, though, as the back of her

head vanished (fluxed out is what she called it) and then her head was back again with its little rattle and

she caught herself doing that careless moaning again. HRRRRRR-RRR-OH-RRRR-RRRR.

“I’m not as into the chunky bacon stuff,” said the goat. “I don’t see what’s so great about it.”

Could she speak while moaning? BON-BON. With a French moan. BOHN-BOHN. BOHN-APPE-

TEET-OHHHH-RRRR.

“I know she’s harmless, but that sound freaks me out. My hair is completely on end.”

“Hannah?” said Dr. Cham. “Where are you, child? Come do a good turn for us, my niece.”

She was right near them, in and out. And they could hear her cleaning up her voice, bright, speaking like a

angel scattering stardust. Yes, the whole maple donut story came out again, and more about the bakery she

would own, the muffins and rolls and baguettes.

why’s (poignant) guide to ruby

85

5. The Theft of the Lottery Captain

And now, Paij-ree’s stories of the Lotteries.

On Endertromb, the organist’s father invented the lottery. The idea came while he was praying to Digger

Dosh.

Digger Dosh is sort of like their God. But ten times scarier. This guy dug an infinitely deep tunnel straight

through the planet and came out dead. But he’s really not dead. He’s really just one second behind them.

And he eats time.

It’s kind of complicated because Digger Dosh totally kills people. But I guess if you do what he says, it’s

not so bad. Maybe I’ll talk about it later. It’s such a pain to talk about because it’s so scary and yet one of

my friends actually believes the whole thing. I get kind of choked up—not like I’m crying, more like I’m

choking.

Anyway, once while praying, three numbers came to Paij-ree’s father.

He then asked his mind, “What are these numbers?”

And his mind played a short video clip of him selling all kinds of numbers. And, for years and years,

travelling and selling numbers.

And he asked his brain, “People will buy numbers?”

And his brain said, “If they buy the right three numbers, give them a prize.”

At which he imagined himself launching off a ski jump and showering people with presents. No question:

he would be an icon.

So he went and did as his brain said and sold numbers. The father’s simple lottery consisted of three unique

numbers, drawn from a set of 25 numbers.
 class LotteryTicket

 NUMERIC_RANGE = 1..25

 attr_reader :picks, :purchased

5. Them What Make the Rules 86

 def initialize(*picks)

 if picks.length != 3
 raise ArgumentError, “three numbers must be picked”
 elsif picks.uniq.length != 3

 raise ArgumentError, “the three picks must be different numbers”
 elsif picks.detect { |p| not NUMERIC_RANGE === p }

 raise ArgumentError, “the three picks must be numbers between 1 and 25.”
 end
 @picks = picks

 @purchased = Time.now
 end

 end

Yes, the LotteryTicket class contained the three numbers (@PICkS) and the time when the ticket was

bought (@PURCHASED). The allowed range of numbers (from one to twenty-five) is kept in the constant

NUMERIC_RANGE.

The initialize method here can have any number of arguments passed in. The asterisk in the picks

argument means that any arguments will be passed in as an Array. Having the arguments in an

Array means that methods like uniq and detect can be used on the arguments together.

This class contains two definitions: the method definition (def) and an attributes definition (attr_reader).

Both are really just method definitions though.

The attr_reader shortcut is identical to writing this Ruby code:
 class LotteryTicket
 def picks; @picks; end
 def purchased; @purchased; end

 end

Attributes are wrapper methods for instance variables (such as @PICkS) which can be used outside of the

class itself. Paij-ree’s father wanted to code a machine which could read the numbers and the date of

purchase from the ticket. In order to do that, those instance variables must be exposed.

Let’s create a random ticket and read back the numbers:
 ticket = LotteryTicket.new(rand(25) + 1,

 rand(25) + 1, rand(25) + 1)

 p ticket.picks

Running the above, I just got: [23, 14, 20]. You will get an error if two of the random numbers happen to

be identical.

However, I can’t change the lottery ticket’s picks from outside of the class.
 ticket.picks = [2, 6, 19]

I get an error: undefined method `picks=’. This is because attr_reader only adds a reader method, not a

writer method. That’s fine, though. We don’t want the numbers or the date to change.

So, the tickets are objects. Instances of the LotteryTicket class. Make a ticket with

LotteryTicket.new. Each ticket has it’s own @PICkS and it’s own @PURCHASED instance variables.

why’s (poignant) guide to ruby

87

The lottery captain would need to draw three random numbers at the close of the lottery, so we’ll add a

convenient class method for generating random tickets.
 class LotteryTicket
 def self.new_random
 new(rand(25) + 1, rand(25) + 1, rand(25) + 1)

 end
 end

Oh, no. But we have that stupid error that pops up if two of the random numbers happen to be identical. If

two numbers are the same, the initialize throws an ArgumentError.

The trick is going to be restarting the method if an error happens. We can use Ruby’s rescue to handle the

error and redo to start the method over.
 class LotteryTicket
 def self.new_random

 new(rand(25) + 1, rand(25) + 1, rand(25) + 1)

 rescue ArgumentError
 redo
 end
 end

Better. It may take a couple times for the numbers to fall together right, but it’ll happen. The wait will build

suspense, huh?

The lottery captain kept a roster of everyone who bought tickets, along with the numbers they drew.
 class LotteryDraw
 @@tickets = {}

 def LotteryDraw.buy(customer, *tickets)
 unless @@tickets.has_key?(customer)

 @@tickets[customer] = []
 end
 @@tickets[customer] += tickets

 end
 end

Yal-dal-rip-sip was the first customer.
 LotteryDraw.buy ‘Yal-dal-rip-sip’,

 LotteryTicket.new(12, 6, 19),
 LotteryTicket.new(5, 1, 3),

 LotteryTicket.new(24, 6, 8)

When it came time for the lottery draw, Paij-ree’s father (the lottery captain) added a bit of code to

randomly select the numbers.
 class LotteryTicket
 def score(final)

 count = 0
 final.picks.each do |note|

 count +=1 if picks.include? note
 end

 count
 end
 end

The score method compares a LotteryTicket against a random ticket, which represents the winning

combination. The random ticket is passed in through the final variable. The ticket gets one point for every

5. Them What Make the Rules 88

winning number. The point total is returned from the score method.
 irb> ticket = LotteryTicket.new(2, 5, 19)

 irb> winner = LotteryTicket.new(4, 5, 19)

 irb> ticket.score(winner)
 => 2

You will see how brilliant Paij-ree is, in time. His father commissioned him to finish the lottery for him,

while the demand for tickets consumed the lottery captain’s daylight hours. Can’t you just imagine young

Paij-ree in his stuffy suit, snapping a rubber band in his young thumbs at the company meetings where he

proposed the final piece of the system? Sure, when he stood up, his dad did all the talking for him, but he

flipped on the projector and performed all the hand motions.
 class << LotteryDraw
 def play

 final = LotteryTicket.new_random
 winners = {}
 @@tickets.each do |buyer, ticket_list|

 ticket_list.each do |ticket|
 score = ticket.score(final)

 next if score.zero?
 winners[buyer] ||= []

 winners[buyer] << [ticket, score]
 end

 end
 @@tickets.clear
 winners
 end
 end

His father’s associates were stunned. What was this? (Paij-ree knew this was just another class method

definition—they would all feel completely demoralized when he told them so.) They couldn’t understand

the double angle bracket up there! Yes, it was a concatenator, but how is it in the class title?

Infants, thought Paij-ree, although he held everyone of those men in very high esteem. He was just a kid

and kids are tough as a brick’s teeth.

The << operator allows you to alter the definition of an object. Had Paij-ree simply used class

LotteryDraw, his play method would be a normal instance method. But since he used the << operator,

the play method will be added directly to the class, as a class method.

When you see class << obj, believe in your heart, I’m adding directly to the definition of obj.

The budding organ instructor also threw in a tricky syntax worth examining. In the ninth line, a winner has

been found.
 winners[buyer] ||= []
 winners[buyer] << [ticket, score]

The ||= syntax is a shortcut.
 winners[buyer] = winners[buyer] || []

The double pipe is an or logic. Set winners[buyer] equal to winners[buyer] or, if winners[buyer] is nil,

set it to []. This shortcut is a little strange, but if you can really plant it in your head, it’s a nice timesaver.

You’re just making sure a variable is set before using it.

why’s (poignant) guide to ruby

89

 irb> LotteryDraw.play.each do |winner, tickets|

 irb> puts winner + “won on “ + tickets.length + “ ticket(s)!”
 irb> tickets.each do |ticket, score|

 irb> puts “\t” + ticket.picks.join(‘, ‘) + “: “ + score

 irb> end
 irb> end

 Gram-yol won on 2 ticket(s)!

 25, 14, 33: 1
 12, 11, 29: 1

 Tarker-azain won on 1 ticket(s)!
 13, 15, 29: 2

 Bramlor-exxon won on 1 ticket(s)!
 2, 6, 14: 1

But these salad days were not to continue for Paij-ree and his father. His father often neglected to launder

his uniform and contracted a moss disease on his shoulders. The disease gradually stole his equilibrium

and his sense of direction.

His father still futilely attempted to keep the business running. He spiraled through the city, sometimes

tumbling leg-over-leg down the cobbled stone, most often slowly feeling the walls, counting bricks to the

math parlours and coachmen stations, where he would thrust tickets at the bystanders, who hounded him

and slapped him away with long, wet beets. Later, Paij-ree would find him in a corner, his blood running

into the city drains alongside the juices of the dark, splattered beets, which juice weaseled its way up into

his veins and stung and clotted and glowed fiercely like a congested army of brake lights fighting their way

through toll bridges.

A Word About Accessors (Because I Love You and I Hope For
Your Success and My Hair is On End About This and Dreams
Really Do Come True)
Earlier, I mentioned that attr_reader adds reader methods, but not writer methods.
 irb> ticket = LotteryTicket.new
 irb> ticket.picks = 3

 NoMethodError: undefined method `picks=’ for #<LotteryTicket:0xb7d49110>

Which is okay in this case, since Paij-ree’s father didn’t want the numbers to be changed after the ticket

was bought. If we were interested in having instance variables which had both readers and writers, we

would use attr_accessor.
 class LotteryTicket
 attr_accessor :picks, :purchased
 end

Which is exactly the same as this lengthier code:
 class LotteryTicket
 def picks; @picks; end

 def picks=(var); @picks = var; end
 def purchased; @purchased; end

 def purchased=(var); @purchased = var; end
 end

5. Them What Make the Rules 90

Holy cats! Look at those writer methods for a moment. They are the methods named picks= and

purchased=. These methods intercept outside assignment to instance variables. Usually you will just

let attr_reader or attr_accessor (or even perhaps attr_writer) do the work for you. Other times you may

want to put a guard at the door yourself, checking variables in closer detail.
 class SkatingContest
 def the_winner; @the_winner; end
 def the_winner=(name)

 unless name.respond_to? :to_str
 raise ArgumentError, “The winner’s name must be a String,
 not a math problem or a list of names or any of that business.”
 end

 @the_winner = name
 end
 end

Most of the time you won’t use this. But, as we move along through your lessons, you’ll find that Ruby has

lots of escape hatches and alley ways you can sneak into and hack code into. I’m also preparing you for

metaprogramming, which, if you can smell that dragon, is ominously near.

Paij-ree was an enterprising young Endertromaltoek. He hammered animal bones into long, glistening

trumpets with deep holes that were plugged by corks the musicians banded to their fingers. Sure, he only

sold three of those units, but he was widely reviled as a freelance scholar, a demonic one, for he was of

a poorer class and the poor only ever acquired their brilliance through satanic practice. Of course, they

were right, indeed, he did have a bargain with the dark mages, whom he kept appointments with annually,

enduring torturous hot springs, bathing as they chanted spells.

He adored his father, even as his father deteriorated into but a gyroscope. He idolized the man’s work

and spent his own small earnings playing the lottery. He loved to watch the numerals, each painted upon

hollow clay balls, rise in the robloch (which is any fluid, pond or spill that has happened to withstand the

presence of ghosts), the great bankers tying them together on a silver string, reading them in order.

Even today, Paij-ree paints the scenes with crude strokes of black ink on sheets of aluminum foil. It is very

touching to see him caught up in the preciousness of his memory, but I don’t know exactly why he does it

on aluminum foil. His drawings rip too easily. Paij-ree himself gets mixed up and will serve you crumbcake

right off of some of this art, even after it has been properly framed. So many things about him are troubling

and absurd and downright wretched.

The disease spread over his father’s form and marshy weeds covered his father’s hands and face. The moss

pulled his spine up into a rigid uprightness. So thick was the growth over his head that he appeared to

wear a shrub molded into a bowler’s hat. He also called himself by a new name—Quos—and he healed the

people he touched, leaving a pile of full-blooded, greenly-cheeked villages in his wake as he travelled the

townships. Many called him The Mossiah and wept on his feet, which wet the buds and caused him to weed

into the ground. This made him momentarily angry, he harshly jogged his legs to break free and thrashed

his fists wildly in the sky, bringing down a storm of lightning shards upon these pitiful.

Paij-ree was apart from the spiritual odysseys of his father (in fact, thought the man dead), so he only saw

the decay of the lottery without its captain present. Here is where Paij-ree went to work, reviving the dead

why’s (poignant) guide to ruby

91

lottery of his family.

Gambling with Fewer Fingers
The city was crowded with people who had lost

interest in the lottery. The weather had really worn

everyone down as well. Such terrible rain flooding

their cellars. The entire city was forced to move up

one story. You’d go to put the cap back on your pen

and you’d ruin the pen, since the cap was already

full of slosh. Everyone was depleted, many people

drowned.

Paij-ree found himself wasting his days in a

quadruple bunkbed, the only furniture that managed

to stay above sea level. He slept on the top bed. The

third bed up was dry as well, so he let a homeless

crater gull nest upon it. The gull didn’t need the

whole bed, so Paij-ree also kept his calculators and

pencils down there.

At first, these were very dark times for both of them,

and they insisted on remaining haggard at all times.

Paij-ree became obsessed with his fingernails,

kept them long and pristine, while the rest of him

deteriorated under a suit of hair. In the company of

Paij-ree, the crater gull learned his own eccentrity

and plucked all the feathers on the right side of his

body. He looked like a cutaway diagram.

They learned to have happier times. Paij-ree carved

a flute from the wall with his nails and played it

often. Mostly he played his relaxed ballads during

the daytime. In the evening, they pounded the wall

and shook the bed frame in time to his songs. The

gull went nuts when he played a certain four notes

and he looped this section repeatedly, watching the

gull swoop and circle in ectasy. Paij-ree could hardly

keep his composure over the effect the little tune

had and he couldn’t keep it together, fell all apart,

slobbering and horse-giggling.

sidebar!

Another Excerpt from The Scarf
Eaters
(from Chapter VIII: Sky High.)

“I know you,” said Brent. “And I know your timelines. You
couldn’t have done this Flash piece.”

“So, you’re saying I’m predictable?” said Deborah. She
opened her hands and the diced potatoes stumbled like little,
drunk sea otters happily into the open crockpot.

“You’re very linear,” said Brent. He took up a mechanical
pencil, held it straight before his eyes, gazing tightly at it
before replacing it in the pencil holder on the counter. “Do
you even know how to load a scene? How to jump frames?
This movie I saw was all over the place, Deb.”

She heaped five knit scarves and a single bandana into the
slow cooker and set it on high. She closed the lid, leaving her
hand resting upon it.

“What is it about this movie?” Deborah asked. “You go to
Flash sites all the time. You played the Elf Snowball game
for two seconds, it didn’t interest you. You didn’t care for Elf
Bowling games even. And you weren’t even phased by that
Hit The Penguin flash game. Elf versus Penguin? Don’t even
ask!

“Now this movie comes along and you can’t get a grip.” She
walked over and siddled up next to him. “Yo, bro, it’s me.
Deborah. What happened when you saw that movie?”

“Everything,” said Brent, his eyes reflecting a million worlds.
“And: nothing. It opened with a young girl riding upon a wild
boar. She was playing harmonica. The harmonica music
washed in and out, uneasy, unsure. But she rode naturally, as
if it wasn’t anything of a big deal to ride a wild boar. And with
Flash, riding a wild boar really isn’t a big deal.”

Deborah unclasped her bracelet and set it on the counter by
the crockpot.

“The bottom of the movie started to break up, an ink puddle
formed. The boar reared up, but his legs gave way to the all
the dark, sputtering ink.”

“Dark clouds converged. Hardcore music started to play.
Secret agents came out of the clouds. CIA guys and stuff. The
animation simply rocked.

“And then, at the very end of the movie, these words fade
upon the screen. In white, bold letters.”

“Sky high,” said Deborah.

“How did you know?” Brent’s lip quivered. Could she be
trusted?

“There is no room left in the world,” she said. “No room for
Scarf Eaters, no room for you and I. Here, take my hand.”

sidebar!

5. Them What Make the Rules 92

Paij-ree called the gull Eb-F-F-A, after that favorite song.

Friendship can be a very good catalyst for progress. A friend can find traits in you that no one else can. It’s

like they searched your person and somehow came up with five full sets of silverware you never knew were

there. And even though that friend may not understand why you had these utensils concealed, it’s still a

great feat, worth honoring.

While Eb-F-F-A didn’t find silverware, he did find something else. A pile of something else. Since Paij-ree

was stranded on the quadruple bed, the gull would scout around for food. One day, he flew down upon a

barrel, floating over where the toolshed had been. Eb-F-F-A walked on top of the barrel, spinning it back to

Paij-ree’s house and they cracked it open, revealing Paij-ree’s lost collection of duck bills.

Yes, real duck bills. (Eb-F-F-A was esophagizing his squawks, remaining calm, sucking beads of sweat back

into his forehead—ducks were not of his chosen feather, but still in the species.) Paij-ree clapped gleefully,

absolutely, he had intended to shingle his house with these, they could have deflected a bit of the torrent.

Probably not much, nothing to cry about.

And the roof glue was at the barrel’s bottom and they were two enterprising bunkmates with time to kill,

so they made a raft from the previously-quacked lip shades. And off they were to the country! Stirring

through a real mess of city and soup. How strange it was to hit a beach and find out it was just the old dirt

road passed Toffletown Junction.

In the country, they sold. It was always a long walk to the next plantation, but there would be a few buyers

up in the mansion (“Welcome to The Mansion Built on Beets”, they’d say or, “The Mansion Built on

Cellophane Substitutes—don’t you know how harmful real cellophane can be?”) And one of the families

wrapped up some excess jelly and ham in some cellophane for the two travellers. And they almost died one

day later because of it.

Then, when the heat came and, as the first countryside lottery was at nigh, a farmer called to them from his

field, as he stood by his grazing cow. Paij-ree and Eb-F-F-A wandered out to him, murmuring to each other

as to whether they should offer him the Wind-Beaten Ticket Special or whether he might want to opt in to

winning Risky Rosco’s Original Homestyle Country Medallion.

But the farmer waved them down as he approached, “No, put your calculators and probability wheels away.

It’s for my grazledon.” He meant his cow. The Endertromb version: twice as much flesh, twice as meaty,

doesn’t produce milk, produces paper plates. Still, it grazes.

“Your grazledon (poh-kon-ic) wants a lucky ticket?” asked Paij-ree.

“He saw you two and got real excited,” said the farmer. “He doesn’t know numbers, but he understands

luck a bit. He almost got hit by a doter plane one day and, when I found him, he just gave shrug. It was like

he said, ‘Well, I guess that worked out okay.’”

“The whole (shas-op) lottery is numer-(ig-ig)-ic,” said Paij-ree. “Does he know (elsh) notes? My eagle

knows (losh) notes.” Paij-ree whistled at the crater gull, who cooed back a sustained D.

why’s (poignant) guide to ruby

93

The farmer couldn’t speak to his grazledon’s tonal awareness, so Paij-ree sent the gull to find out (D-D-D-A-

D, go-teach-the-gra-zle) while he hacked some notes into his calculator.
 class AnimalLottoTicket

 # A list of valid notes.
 NOTES = [:Ab, :A, :Bb, :B, :C, :Db, :D, :Eb, :E, :F, :Gb, :G]

 # Stores the three picked notes and a purchase date.
 attr_reader :picks, :purchased

 # Creates a new ticket from three chosen notes. The three notes
 # must be unique notes.

 def initialize(note1, note2, note3)
 if [note1, note2, note3].uniq!

 raise ArgumentError, “the three picks must be different notes”
 elsif picks.detect { |p| not NOTES.include? p }

 raise ArgumentError, “the three picks must be notes in the chromatic scale.”
 end
 @picks = picks

 @purchased = Time.now
 end

 # Score this ticket against the final draw.
 def score(final)

 count = 0
 final.picks.each do |note|

 count +=1 if picks.include? note
 end

 count
 end

 # Constructor to create a random AnimalLottoTicket
 def self.new_random
 new(NOTES[rand(NOTES.length)], NOTES[rand(NOTES.length)],

 NOTES[rand(NOTES.length)])

 rescue ArgumentError
 redo
 end

 end

No need for the animal’s tickets to behave drastically different from the traditional tickets. The

AnimalLottoTicket class is internally different, but exposes the same methods seen in the

original LotteryTicket class. The score method is even identical to the score method from the old

LotteryTicket class.

Instead of using a class variable to store the musical note list, they’re stored in a constant called AnimalLo

ttoTicket::NOTES. Variables change and the note list shouldn’t change. Constants are designed to stay

the same. You can still change the constant, but you’ll have to be tricky or Ruby will speak up.
 irb> AnimalLottoTicket::NOTES = [:TOOT, :TWEET, :BLAT]

 (irb):3: warning: already initialized constant NOTES

 => [:TOOT, :TWEET, :BLAT]

The gull came back with the grazledon, his name was Merphy, he was thrilled to play chance, he puffed his

face dreamily, whistled five and six notes in series, they all held his collar, pulled him close to the calculator

and let him breathe three notes, then they choked the bedosh outta him until his ticket was printed and

everything was nicely catalogued inside @@TICkETS[‘merphy’]. Thankyou, see ya at the draw!

5. Them What Make the Rules 94

So, the fever of the lottery became an epidemic among the simple minds of the animals. Paij-ree saved his

costs, used the same LotteryDraw class he’d used in the corporate environment of the lottery from his

childhood. And soon enough, the animals were making their own music and their own maps and films.

“What about The Originals?” I asked Paij-ree. “They must have hated your animals!”

But he winced sourly and pinched his forehead. “I am an Original. You as well. Do we (ae-o) hate any of

them?”

Not too long after the lottery ended, Paij-ree felt the crater gull Eb-F-F-A lighting upon his shoulder, which

whistled an urgent and sad C-Eb-D C-A-Eb. These desparate notes sent an organ roll of chills straight

through Paij-ree. Had the King God of Potted Soil, Our Beloved Topiary, the Mossiah Quos, Literal

Father of That Man Who Would Be My Daughter’s Organ Instructor—had he truly come to his end? How

could this be? Could the great arbors no longer nourish him and guide the moist crosswinds to him? Or did

his own spindly lichen hedge up his way and grow against his breathing?

You never mind, went the tune of the gull. He has detoriated and weakened and fallen in the lit door of

your home cottage. His tendrils needing and crying for the day to not end. For the sun to stay fixed and

wide and attentive.

Plor-ian, the house attendant, kept the pitchers coming and Quos stayed well watered until Paij-ree arrived

to survey the decaying buds of soft plant and the emerging face of his father, the lottery captain. His skin

deeply pocked like an overly embroidered pillow. Great shoots springing from his sleeves now curled back

with lurching thirst.

Paij-ree combed back the longer stems around his father’s eyes and those coming from the corners of his

mouth. While I’d like to tell you that Paij-ree’s tears rolled down his sleeves and into the pours of his father,

rejuvenating and restoring the grassy gentleman: I cannot say this.

Rather, Paij-ree’s tears rolled down his sleeves and into the creaking clapboard floor, nourishing the vile

weeds, energizing the dark plant matter, which literally lept through the floor at night and strangled Our

Quos. Yank, pull, crack. And that was his skull.

So Paij-ree could never be called Wert-ree or Wert-plo after that.

6. Them What Make the Rules
Hannah lept back from the wall and clenched down on her fingers.

“This is the wall,” said Dr. Cham. “The Originals are in there. My child, can you lead us to the observation

deck?”

“You expect us to go up against those guys?” asked the goat. “They’re mad as koalas. But these koalas have

lasers!”

“We prevail, though,” said Dr. Cham. “You and I know this.”

why’s (poignant) guide to ruby

95

“Okay, well I’m muddled on that point,” said the goat. “Do we really win? Or could we be thinking about

Kramer vs. Kramer? Does Dustin Hoffman win or do we win?”

“No. No. No. No.” Hannah hovered and dragged her legs along the wall nervously. “There is a man with a

huge face in there!”

“Mr. Face,” said the Doctor. “He is the original face.”

“He didn’t see me,” said Hannah and moaned. HOMA-HOMA-ALLO-ALLO.

She made that hollow weeping through the crumbling mouseholes and the freezer gateways, fluxing in and

out, causing the video checkpoints to hiss and the wall panels to brace themselves and fall silent. The three

passed through two levels of frayed security and emerged in the observation deck overlooking the cargo bay.

“The last living among The Originals,” said Dr. Cham. “Are you alright with this, Hannah?” Which she

didn’t hear in any way, as her eyes laid fixed on the legendary creatures.

“Look at them,” said the goat. “These guys wrote the rule books, Doctor. We owe everything to these guys.”

“What about God?” said Dr. Cham.

“I don’t really know,” said the goat. “Hannah probably knows better than any of us about that.”

Hannah said nothing. She only really knew one other ghost and that was her Post-Decease Mediator, Jamie

Huft. Who didn’t seem to have any answers for her and required questions to be submitted in writing with

a self-addressed stamped envelope included. Hannah hadn’t gotten the ball rolling on that P.O. Box yet.

“We must be up in the mountains,” said the goat. “Look out at that blackness.”

“I saw another deck like this down by where we found Hannah,” said Dr. Cham. “Down closer to your living

5. Them What Make the Rules 96

area. You should take time to search for it. It’s very peaceful there. You can see Earth and the seven seas.”

“The seven seas?” The goat wondered if that was near The Rockettes. He’d read his share of material on

precision dancing and he’d seen that line of legs, mincing across the stage like a big, glitsy rototiller.

Hannah stirred to life.

And none of the three spoke when The Originals flicked off the slide projector and boarded a very slender

rocketship and cleanly exploded through a crevice in the cargo bay roof.

“Oh, boy,” said the goat.

“What?” said Hannah.

“You’re going to die,” said the goat.

Dr. Cham looked over the controls in front of them, a long panel of padded handles and green screens.

“I’m already dead. I’m a ghost.”

The goat looked down at the Doctor, who was rummaging under the control panel. “Okay, well if your uncle

isn’t going to have a talk with you, I’m going to make things very clear. There’s a good chance these guys are

going to build a bomb. And you see how I’m fidgeting? You see how my knees are wobbling?”

“Yeah.”

“Yeah, that’s how real this is, kid. I don’t remember anything from that confounded book except that these

guys are building a bomb that can blow up the ghost world. Because once the ghost world’s gone, then

why’s (poignant) guide to ruby

97

Digger Dosh gets his one second back. It’s a trade they’ve worked out. Hell, it’s sick stuff, that’s all you

need to know.”

“But I’m dead.”

“Okay, well, we’re talking, aren’t we? You can talk, so are you dead?” The goat shook his head. “I wish I

could remember if we win or if it was Dustin Hoffman.”

Hannah cried. “Why do I have to die again?” She wailed and her legs fell into flux and she sunk into the

floor. MOH-MOHHH-MAO-MAOOO.

Dr. Cham had forceably yanked on a plush handle, which unlocked and slid open like a breadbox. He

reached his hands inside and found a keyboard firmly bolted deep inside.

“That’s it,” he said and pulled up irb, which appeared on a display to the left of his concealed typing. He

checked the Ruby version.
 irb> RUBY_VERSION
 => “1.8.2”

Ruby was up-to-date. What else could he do? Scanning constants and class_variables was pointless. The

only reason that had worked with the Elevator class was because someone had left irb running with their

classes still loaded.

He had just loaded this irb, so no special classes were available yet. He had to find some classes. He started

by loading the `rbconfig` file to get an idea of what Ruby’s settings were.
 irb> require ‘rbconfig’

 => true
 irb> Config::CONFIG
 => {“abs_srcdir”=>”$(ac_abs_srcdir)”, “sitedir”=>”bay://Ruby/lib/site_ruby”, ... }

Too much information to sort through there. The Config::CONFIG constant is a Hash that contains

every environment setting used to setup Ruby. You can find the operating system name at

Config::CONFIG[‘host_os’]. The directory where core Ruby libraries are stored can be found at Config::CON

FIG[‘rubylibdir’]. Ruby programs can store helper files at Config::CONFIG[‘datadir’].

What Dr. Cham really needed, though, was a list of all the libraries that aren’t core Ruby libraries. Libraries

which were installed by The Originals or whoever manned this console. He checked a few global variables

for this information.
 irb> $”
 => [“irb.rb”, “e2mmap.rb”, “irb/init.rb”, ... “rbconfig.rb”]

 irb> $:
 => [“bay://Ruby/lib/site_ruby/1.9”, “bay://Ruby/lib/site_ruby/1.9/i686-unknown”,
 “bay://Ruby/lib/site_ruby”, “bay://Ruby/lib/1.9”,
 “bay://Ruby/lib/1.9/i686-unknown”, “.”]

Aha, good. Dr. Cham stroked his beard and looked over his irb session. The $” global variable contains an

Array of every library which has been loaded with require. Most of these libraries had been loaded by irb.

He had loaded ‘rbconfig.rb’ earlier, though.

The $: global variable, which can also be accessed as $LOAD_PATH, contains a list of all the directories

5. Them What Make the Rules 98

which Ruby will check when you try to load a file with require. When Dr. Cham ran require ‘rbconfig’,

Ruby checked each directory in order.
 bay://Ruby/lib/site_ruby/1.9/rbconfig.rb

 bay://Ruby/lib/site_ruby/1.9/i686-unknown/rbconfig.rb (*)

 bay://Ruby/lib/site_ruby/rbconfig.rb
 bay://Ruby/lib/1.9/rbconfig.rb

 bay://Ruby/lib/1.9/i686-unknown/rbconfig.rb

 ./rbconfig.rb

The second path was where Ruby ended up finding the rbconfig.rb file. Dr. Cham guessed that the first five

paths were absolute paths. These were paths to directories on a drive called bay. Absolute paths may

vary on your system. On Windows, absolute paths will start with a drive letter. On Linux, absolute paths

start with a slash.

The directory “.” indicates a relative path. The lone period represents the current work directory. The

directory where Dr. Cham started up irb. So, after Ruby has searched all the standard places, it checks the

current directory.

The goat had peeked his head around Dr. Cham and was watching all these instructions transpire, as he

licked his lips to keep his salivations from running all over the monitors and glossy buttons. He had been

interjecting a few short cheers (along the lines of: No, not that or Yes, yes, right or Okay, well, your choice),

but now he was fully involved, recommending code, “Try require ‘setup’ or, no, try 3 * 5. Make sure that

basic math works.”

“Of course the math works,” said Dr. Cham. “Let me be, I need to find some useful classes.”

“It’s a basic sanity test,” said the goat. “Just try it. Do 3 * 5 and see what comes up.”

Dr. Cham caved.
 irb> 3 * 5
 => 15

“Okay, great! We’re in business!” the goat tossed his furry face about in glee.

Dr. Cham patted the goat’s head, “Well done. We can continue.”
 irb> Dir.chdir(“bay://Ruby/lib/site_ruby/1.9/”)

 => 0
 irb> Dir[“./*.{rb}”]
 => [‘endertromb.rb’, ‘mindreader.rb’, ‘wishmaker.rb’]

Dr. Cham had use chdir to change the current working directory over the the first path listed in $LOAD_

PATH. This first path in site_ruby is a common place to store custom classes.

Here were the three legendary classes that my daughter’s organ instructor had inscribed for me earlier in

this chapter. And, Dr. Cham, having read this selfsame chapter, recognized these three pieces of the system

immediately.

The Endertromb class which contained the mysteries of this planet’s powers. The MindReader class

which, upon scanning the minds of its inhabitants, read each mind’s contents. And, finally, the crucial

why’s (poignant) guide to ruby

99

WishMaker class which powered the granting of ten-letter wishes, should the wish ever find its way to the

core of Endertromb.

“How about 4 * 56 + 9?” asked the goat. “We don’t know if it can do compound expressions.”

“I’ve got the MindReader right here,” said Dr. Cham. “And I have the WishMaker here next to it. This

planet can read minds. And this planet can make wishes. Now, let’s see if it can do both at the same time.”

7. Them What Live the Dream
While The Originals’ craft had long disappeared, Dr. Cham frantically worked away at the computer built

into the control panel up in the observation deck. Hannah had disappeared into the floor (or perhaps those

little sparks along the ground were still wisps of her paranormal presence!) and the goat amicably watched

Dr. Cham hack out a Ruby module.
 require ‘endertromb’

 module WishScanner
 def scan_for_a_wish
 wish = self.read.detect do |thought|

 thought.index(‘wish: ‘) == 0
 end

 wish.gsub(‘wish: ‘, ‘‘)
 end

 end

“What’s your plan?” asked the goat. “It seems like I could have solved this problem in like three lines.”

“This Module is the new WishScanner technology,” he said. “The scanner only picks up a wish if it starts

with the word wish and a colon and a space. That way the planet doesn’t fill up with every less-than-ten-

letter word that appears in people’s heads.”

“Why don’t you just use a class?” asked the goat.

“Because a Module is simpler than a class. It’s basically just a storage facility for methods. It keeps a group

of methods together. You can’t create new objects from a method.”

“But aren’t you going to want a WishScanner object, so you can actually use it?” said the goat, appalled.

“I’m going to mix it into the MindReader,” said Dr. Cham. And he did.
 require ‘mindreader’
 class MindReader
 include MindScanner

 end

“Now, the MindScanner module is mixed in to the MindReader,” said Dr. Cham. “I can call the scan_for_

a_wish method on any MindReader object.”

“So, it’s a mixin,” said the goat. “The MindScanner mixin.”

“Yes, any module which is introduced into a class with include is a mixin to that class. If you go back and

look at the scan_for_a_wish method, you’ll see that it calls a self.read method. I just have to make sure

5. Them What Make the Rules 100

that whatever class I’m mixing MindScanner into has a read method. Otherwise, an error will be thrown.”

“That seems really wierd that the mixin requires certain methods that it doesn’t already have. It seems like

it should work by itself.”

Dr. Cham looked up from the keyboard at the goat. “Well, it’s sort of like your video collection. None of

your video cassettes work unless they are put in a machine that uses video cassettes. The depend on each

other. A mixin has some basic requirements, but once a class meets those requirements, you can add all

this extra functionality in.”

“Hey, that’s cool,” said the goat.

“You read the book thirty times and you didn’t pick that up?” asked Dr. Cham.

“You’re a much better teacher in person,” said the goat. “I really didn’t think I was going to like you very

much.”

“I completely understand,” said the Doctor. “This is much more real than the cartoons make it seem.”
 require ‘wishmaker’

 reader = MindReader.new
 wisher = WishMaker.new

 loop do
 wish = reader.scan_for_a_wish
 if wish

 wisher.grant(wish)
 end
 end

Irb sat and looped on the screen. It’ll do that until you hit Control-C. But Dr. Cham let it churn away.

Looping endlessly, scanning the mind waves for a proper wish.

And Dr. Cham readied his wish. At first, he thought immediately of a stallion. To ride bareback over the

vales of Sedna. But he pulled the thought back, his wish hadn’t been formed properly. A stallion was useless

in pursuing The Originals, so he closed his eyes again, bit his lip and he thought to himself: wish: whale.

Last Whale to Peoplemud
The blocky, sullen whale appeared down at the castle entrance, where Hannah was bashing on a rosebud

with her hand. She whacked at it with a fist, but it only stayed perfect and pleasant and crisp against the

solid blue sky of Endertromb.

“I’m bored,” she said to the whale. BOHR-BOHR-OHRRRRRR.

“Ok,” said the whale, deep and soft. As the word slid along his massive tongue, its edges chipped off and the

word slid out polished and worn in a bubble by his mouth’s corner.

“I always have to die,” said the young ghost. “People always kill me.”

The whale fluttered his short fins, which hung at useless distance from the ground. So, he pushed himself

toward her with his tail. Scooting over patches of grass.

why’s (poignant) guide to ruby

101

“People kill, so who do they kill?” said the girl. “Me. They kill me every time.”

The whale made it to within three meters of the girl, where he towered like a great war monument that

represents enough dead soldiers to actually steal a lumbering step towards you. And now, the whale

rested his tail and, exhausted by the climb thus far, let his eyelids fall shut and became a gently puffing clay

mountain, his shadow rich and doubled-up all around the hardly visible Hannah.

But another shadow combined, narrow and determined. Right behind her, the hand came on to her

shoulder, and the warm ghost inside the hand touched her sleeve.

“How did you get down here?” said the girl.

Dr. Cham sat right alongside her and the goat walked around and stood in front.

“Listen to us,” said Dr. Cham. “We’ve got to follow this mangy pack of ne’er-do-wells to the very end,

Hannah. And to nab them, we need your faithful assistance!”

“I’m scared,” cried Hannah.

“You’re not scared,” said the goat. “Come on. You’re a terrifying little phantom child.”

“Well,” she said. “I’m a little bored.”

Dr. Cham bent down on a knee, bringing his shaggy presence toward the ground, his face just inches from

hers. “If you come with us, if you can trust what we know, then we can bag this foul troupe. Now, you say

your destiny is to be a baker. I won’t dispute that. You have every right on Earth—and Endertromb, for that

matter—to become a baker. Say, if you didn’t become a baker, that would be a great tragedy. Who’s going to

take care of all those donuts if you don’t?”

She shrugged. “That’s what I’ve been saying.”

“You’re right,” said the Doctor. “You’ve been saying it from the start.” He looked up to the sky, where the

wind whistled peacefully despite its forceful piercing by The Originals’ rocketship. “If your destiny is to be

a baker, then mine is to stop all this, to end the mayhem that is just beginning to boil. And hear me, child—

hear how sure and solid my voice becomes when I say this—I ended your life, I bear sole responsibility for

your life as an apparition, but I will get it back. It’s going to take more than a donut, but you will have a real

childhood. I promise you.”

5. Them What Make the Rules 102

Sure, it took a minute for the goat to cut his wish down to ten letters, but he was shortly on his way,

following the same jetstreams up into the sky, up toward Dr. Cham and his ghost niece Hannah. Up toward

the villanous animal combo pak called The Originals. Up toward The Rockettes.

And Digger Dosh bludgeoned and feasted on each second they left behind them.

why’s (poignant) guide to ruby

103

6.

Downtown

6. Downtown 104

Oblivious to their involvement in the expansive plan of The Originals, both the tall fox and the much shorter

fox had wandered right into the red alert zone, the city Wixl. I desire a spatula to scoop them aside with,

shuffle them off to the coast near the beach hatcheries, hide them in piles of fish eggs, hold down their

pointy ears, concealing their luxurious hides. And above them I would stand, casting an unmoving shadow,

holding my rifle aloof.

I can’t. I have you to teach. I have to groom and care for myself. The lightbulbs upstairs need changing.

A free pack of halogen lightbulbs just showed up out of the mail. Somebody out there is obviously trying

to get me to use them. So I’m going to screw ‘em in. And just stand there, casting an unmoving shadow,

holding my rifle aloof.

Should that shadow be nice and defined, then I’ll keep ‘em.

1. If I Were Looking For a Vehicle

I like seeing these two out in the wild. They got pretty bored here in the studio. They started making up

wierd slogans and stuff. They had some phrase they kept repeating, forming fixations upon. You can’t be

exposed to all that contrived fox nonsense.

Let’s just say: I am really trying my best to keep things collegiate. Having never attended college, I can’t

well say if every passage written chimes right with the stringent criteria which academia demands. I have

university friends aplenty, some who tour the globe in their pursuits, and I try to inflect my voice with just

their blend of high culture.

why’s (poignant) guide to ruby

105

Sometimes I applaud myself for going beyond the work of my educated friends—only in quiet corridors, we

never butt heads publicly—because I have actually subscribed to a school of thought while they are still in

their books, turning and turning.

I am a preeventualist. I have dabbled in it long enough and am glad to come forth with it. Inevitably,

some of you have already started mining this book for Marxist symbology. I am sad to kill those

interpretations, but I believe any nihilist conclusions you’ve drawn will still hold up under scrutiny.

Anyway, I’ll drop the rhetoric. I only mention preeventualism because, aside from being a refreshing and

easy alternative to the post-modernism we’re born with, this meta-cult offers a free lost-and-found service

for the residents of Wixl.
 require ‘open-uri’
 open(“http://preeventualist.org/lost”) do |lost|

 puts lost.read
 end

I have no way of alerting the foxes to this service. And I’m sure it’s too soon for their truck to be listed. Still,

the good intentions are here.

If you’re connected to the Internet, the above Ruby should have downloaded the web page from the Internet

and printed it to the screen. In a message resembling this:
 THE PREEVENTUALIST’S LOSING AND FINDING REGISTRY
 (a free service benefiting the ENLIGHTENED who have been LIGHTENED)

 updates are made daily, please check back!

 this service is commissioned and
 subsidized in part by The Ashley Raymond
 Youth Study Clan

 ...
 all seals and privileges have been filed
 under the notable authorship of Perry W. L. Von Frowling,
 Magistrate Polywaif of Dispossession. Also, Seventh Straight Winner
 of the esteemed Persistent Beggar’s Community Cup.
 ...

 ABOUT THE REGISTRY
 ==================
 Hello, if you are new, please stay with us. A brief explanation of our service will
 follow. First, a bit of important news from our beloved magistrate. (The kids call
 him Uncle Von Guffuncle. Tehe!)

 IMPORTANT NEWS
 ==============
 / 15 April 2005 /
 hi, big news. we were on channel 8 in wixl and ordish. cory saw it. i was on and
 jerry mathers was on. if you didn’t see it, e-mail cory. he tells it the best. all
 i can say is those aren’t MY hand motions!! (joke for people who watch channel 8.)
 thanks harry and whole channel 8 news team!!
 - perry

 / 07 April 2005 /
 we’re all sifting through the carpet here at hq, but if you could all keep an eye out
 for caitlin’s clipboard, she’s too quiet of a gal to post it and i know that it’s
 REALLY important to her. she had a few really expensive panoramic radiographs of her
 husband’s underbite clipped to a few irreplacable photos of her husband in a robocop
 costume back when the underbite was more prominent. she says (to me), “they’ll know
 what i mean when they see them.” i don’t know what that means. :(

 i’ve checked: * the front desk * the hall * the waiting area * the bathroom * the candy
 closet * the big tv area * the lunch counter * the disciples room * gaff’s old room
 (the one with the painting of the cherry tree) * the server room * staircase. i’ll
 update this as i find more rooms.
 - love, perry

 / 25 Feb 2005 /

6. Downtown 106

 server went down at 3 o’clock. i’m mad as you guys. gaff is downstairs and he’ll
 be down there until he gets it fixed. :O -- UPDATE: it’s fixed, back in bizz!!
 - perry

 / 23 Feb 2005 /
 i know there’s a lot of noise today. stanley bros circus lost twelve llamas and a
 trailer and a bunch of Masterlocks and five tents. they’re still finding lost stuff.
 pls keep your heads, i need everyone’s help. these entertainers have _nothing_. i
 mean it. i gave a guy a purple sticker today (it’s just something i like to do as a
 kind gesture) and he practically slept on it and farmed the ingredients for pizza sauce
 on it. they are on rock bottom.

 so please donate. i know we don’t have paypal or anything. so if you want to donate,
 just post that you found something (a children’s bike, a month of perishable canned
 goods) and that it has the circus people’s names written on it or something.
 - great, perry

 / 15 Nov 2004 /
 preeventualist’s day sale. if you lose something today, you get to pick one free
 item (of $40 value or less) from the house of somebody who found something. we’re
 having so much fun with this!! this is EXACTLY how i got my rowing machine last year
 and i LOVE IT!!
 - perry

I think the Youth Study Clan is doing a great job with this service. It’s a little hokey and threadbare, but if it

can get animals to stop using their instinctive means of declaring ownership, then hats off.

Still, a preeventualist youth group? How can that be? You’ve got to at least flirted with real cynicism

before you can become a preeventualist. And you definitely can’t attend school. So, I don’t know.

Going back to the list of instructions from the Preeventualist’s Losing and Finding Registry.
 USING THE L&F SERVER
 ====================
 The L&F is a free service. The acts of losing and finding are essential qualities in
 building a preeventualist lifestyle. We hope to accommodate your belief.

 We do not use HTML, in order to simplify our work here. Our guys are already working
 fifteen hour days. (Thanks, Terk!! Thanks, Horace!!)

 You may search our service for your lost items. Or you may add your lost (or found)
 item to our registry. This is done by typing the proper address into your browser.

 SEARCHING
 =========
 To search for lost items, use the following address:

 http://preeventualist.org/lost/search?q={search word}

 You may replace {search word} with your search term. For example, to search for “cup”:

 http://preeventualist.org/lost/search?q=cup

 You will be given a list of cups which have been lost or found.

 If you want to search for only lost cups or only found cups, use the `searchlost’ and
 `searchfound’ pages:

 http://preeventualist.org/lost/searchlost?q=cup

I’m not playing games. I know where the truck is. Really, I’m not teasing you. I’ll show you in just a sec.

I’m just saying, look at the foxes:

why’s (poignant) guide to ruby

107

They are helpless. And yet, here is this great tool. A possible key to getting out of this mess. I just want to

poke around, see if there are any clues here.
 require ‘open-uri’

 # Searching all found items containing the word `truck’.

 open(“http://preeventualist.org/lost/searchfound?q=truck”) do |truck|
 puts truck.read

 end

I’m not seeing anything about the tall fox’s truck in this list. That’s okay. The foxes are out of it anyway. We

have some time.

You’ve learned a very simple technique for retrieving a web page from the Internet. The code uses the

OpenURI library, which was written by one of my favorite Rubyists, Akira Tanaka. He’s simplified reading

from the Internet so that it’s identical to reading a file from your computer.

In a previous chapter, we stored your diabolical ideas in a text file. You read these files in Ruby using open.
 require ‘open-uri’

 # Opening an idea file from a folder on your computer.
 open(“folder/idea-about-hiding-lettuce-in-the-church-chairs.txt”) do |idea|

 puts idea.read
 end

Files are input-output objects. You can read and write to a file. In Ruby, all IO (input-output) objects

have read and write methods. The open method slides an IO object down the chute into a block for your

use. IO is your ticket to the outside world. It’s the rays of sunlight cast through the prison bars. (However,

you can’t write to a web page with OpenURI. You’ll need to find a tool for copying to your web server. An

FTP program, for instance.)

If someone wants to read your diabolical idea about hiding lettuce in the church chairs, assuming you’ve

posted it as a web page:
 require ‘open-uri’

 # Opening an idea file available on a web site.

 open(“http://your.com/idea-about-hiding-lettuce-in-the-church-chairs.txt”) do |idea|
 puts idea.read

 end

The OpenURI library also understands FTP addresses as well. This widens the possibilities for where you

6. Downtown 108

can store files. On your system or elsewhere on the Internet.

Reading Files Line by Line
When you’re using OpenURI to get information from the web with the open and read methods, the page is

given to you as a String. You can also read the page one line at a time, if you’re searching for something.

Or if the page is big and you want to conserve your computer’s memory.
 require ‘open-uri’
 open(“http://preeventualist.org/lost/searchfound?q=truck”) do |truck|

 truck.each_line do |line|
 puts line if line[‘pickup’]

 end
 end

The above code will retrieve the list of trucks found by preeventualists, then display only those lines that

actually contain the word ‘pickup’. That way we can trim out the descriptions and look for only the pertinent

lines.

Above, the index brackets are used on a string, so the string is searched for whatever is inside the

brackets. Since the string ‘pickup’ is inside the brackets, the line string is searched for the word “pickup”.

When a web page is loaded with read, the entire page is loaded into memory. Usually this only takes up a

few thousand bytes. But if a page is big (several megabytes), you’ll probably want to use each_line, which

loads one line at a time to avoid exhausting memory.

Yielding is Kiddie Blocks
Ruby often uses iterators in this fashion. Yes, iterators are used for cycling through each item in a collection

of items, such as an array or hash. Now look at an IO source as a collection of lines. The iterator can crawl

that collection of lines.
 class IO
 # Definition for the each_line method. Notice how it has no
 # argument list. Blocks don’t need to be listed as arguments.

 def each_line
 until eof? # until we reach the end of the file...
 yield readline # pass a line into the block

 end
 end
 end

why’s (poignant) guide to ruby

109

The yield keyword is the easiest way to use a block. One word. Just like a curtain has a pullstring or like

a suitcase has a handle. Inside a method, you can press the blinking yield button and it will run the block

attached to that method. Glowing a strong red color until the code inside the block is done. And then it

goes back to blinking and you can press the button again if you like.
 def yield_thrice
 yield
 yield
 yield
 end

Punch the yield button three times quick and the block gets to live its life three times.
 irb> a = [‘first, birth.’, ‘then, a life of flickering images.’, ‘and, finally, the end.’]

 irb> yield_thrice { puts a.shift }
 # prints out:

 # first, birth.
 # then, a life of flickering images.
 # and, finally, the end.

The shift method pulls the first item off an array. The barber shift cuts the hair off and hands it over. Then,

the scalp. And just keeps going, whittling the poor guy down to nothing.

You’ve seen blocks attached to methods. Any Ruby method can have block attached to the end.
 # The brief style of attaching a block to a method.
 # Here the block is surrounded with curly braces.
 open(“idea.txt”) { |f| f.read }

 # The verbose style of attaching a block to a method.
 # Here the block is surrounded with `do’ and `end’
 open(“idea.txt”) do |f|

 f.read
 end

If you pass arguments to yield, those arguments will also be passed to the block. The block is riding in a

little sidecar attached to the method’s motorcycle. The method yells out a list arguments, screaming to the

block over all the wind as they’re racing through the desert. The block taps his helmet like, “I get it, my

brain gets it.”
 # The method opens two files and slides the resulting IO objects down the
 # chute to an attached block.
 def double_open filename1, filename2

 open(filename1) do |f1|
 open(filename2) do |f2|

 yield f1, f2
 end
 end
 end

 # Prints the files out side-by-side.
 double_open(“idea1.txt”, “idea2.txt”) do |f1, f2|

 puts f1.readline + “ | “ + f2.readline

 end

You may also wonder what the yield keyword has to do with street signs. And really, it’s a good question

with, I believe, a good answer. When you run a method, you are giving that method control of your

program. Control to do its job and then come back to with an answer.

With yield, the method is stopping at the intersection, giving control back to you, to your block. The

6. Downtown 110

method is letting you do your work before resuming its work. So while the each_line method does the work

of actually reading lines from a file, the block attached to the each_line method is handed the line itself

and gets a chance to hammer away at it in the sidecar.

Preeventualism in a Gilded Box
You’ve learned so much about OpenURI and using yield to write your own iterators. You know your way

around the lost-and-found service. Really, you can starting hunting through the Wixl junk drawer without

me.

Let’s neatly encapsulate the entire service into a single class.
 require ‘open-uri’

 module PreEventualist
 def self.open page, query
 qs =
 query.map do |k, v|

 URI.escape “#{ k }=#{ v }”
 end.join “&”
 URI.parse(“http://preeventualist.org/lost/” + page + “?” + qs).open do |lost|

 lost.read.split(“--\n”)
 end
 end

 def self.search word
 open “search”, “q” => word

 end
 def self.searchlost word
 open “searchlost”, “q” => word

 end
 def self.searchfound word
 open “searchfound”, “q” => word

 end
 def self.addfound your_name, item_lost, found_at, description

 open “addfound”, “name” => your_name, “item” => item_lost,
 “at” => found_at, “desc” => description

 end
 def self.addlost your_name, item_found, last_seen, description

 open “addlost”, “name” => your_name, “item” => item_found,

 “seen” => last_seen, “desc” => description
 end

 end

At some point with your code, you need to start shaping it into something neat. Save the above module in a

file called preeventualist.rb.

This module is a very simple library for using the Preeventualist’s service. This is exactly the way libraries

are written. You whip up a module or a class, store it in a file, and, if you’re happy with it and want the

world to benefit, put it on the web.

These stragglers can you use your module just like I used OpenURI earlier.
 irb> require ‘preeventualist’

 irb> puts PreEventualist.search(‘truck’)
 irb> puts PreEventualist.addfound(‘Why’, ‘Ruby skills’, ‘Wixl park’,

 “I can give you Ruby skills!\nCome visit poignantguide.net!”)

why’s (poignant) guide to ruby

111

2. Meanwhile, The Porcupine Stops To Fill-Up

3. A Sponsored Dragon-Slaying

“Look around,” said Fox Small. “Some of us don’t have time for quests. Some of us have major

responsibilities, jobs, so on. Livelihood, got it?”

“Heyyyy, my JOB was to kill the drgn!!” screamed the wee rabbit, blinking his eyes and bouncing

frantically from tree to tree to pond to pond. “His snout was a HUGE responsibility!! His smoky breath

was mine to reckon with!! I spent fifty dollars on the cab JUST to get out there, which was another huge

huge ordeal. You have nothing on me, not a single indictment, my whole HERONESS is absoflutely

unimpeachable, my whole APPROACH is abassoonly unapricotable, just ask Lester.”

“Who’s Lester?” said the Fox Small.

“Lester’s my cab driver! He parked at the base of Dwemthy’s Array!!” The rabbit ricocheted madly like a

screensaver for a supercomputer. “Just ask Dwemthy!!”

“Well,” said the Fox Small. He turned back to look up at Fox Tall, who was sitting straight and looking far

into the distance. “Wait, they have a parking lot on Dwemthy’s Array?”

“YEP!! And a pretzel stand!!”

“But, it’s an Array? Do they sell churros?”

“CHOCOLAVA!!” bleeted the rabbit.

6. Downtown 112

“What about those glow-in-the-dark ropes that you

can put in your hair? Or you can just hold them by

your side or up in the air—”

“BRAIDQUEST!!”

“You should get a cut of the salesman’s commission,”

spoke Fox Small. “Folks came out to see you kill the

dragon, right?”

“BUT!! I don’t operate the tongs that actually

extract the chocolava.”

“I’m just sayin. You do operate the killing

mechanism. So you have a stake in the ensalada.”

“OH NO!! I left my favorite lettuce leaves in

Dwemthy’s Array!!” squealed the rabbit, twirling

like a celebratory saber through the quaking oak.

Distantly: “Or Lester’s trunk, maybe?”

“You know—Gheesh, can you stay put??” said Fox

Small.

“My radio,” said Fox Tall, stirring to life for a

moment, “in my pickup.” The glaze still seeping

from his eyes. His stare quivered and set back into

his face, recalling another time and place. A drive

out to Maryland. Sounds of Lionel Richie coming in

so clearly. The wipers going a bit too fast. He pulls

up to a house. His mother answers the door. She is a

heavily fluffed fox. Tears and makeup.

Slumping back down, “That porcupine is changing

my presets.”

The rabbit bounded up on to the armrest of the park

bench and spoke closely. “BUT!! Soon I will feast

on drgn’s head and the juices of drgn’s tongue!!”

The rabbit sat still and held his paws kindly.

“(Which I hope will taste like cinnamon bears,)”

whispered the rabbit, intimately.

“I love cinammon,” said Fox Small. “I should go

killing with you some time.”

sidebar!

The Inadvertant Meteor
When I first began my inquiry into preeventualism, I was

relayed the following story. I was told that this was all I

needed to understand the philosophy.

There was this sculptor who just wasn’t satisfied with his

work. He had primarily studied traditional subject matter

and excelled at sculpting both the human figure and elaborate

vegetation. And he was really quite an exquisite sculptor. He

just didn’t feel like he was making his mark upon the world.

By this time, he had aged well into his fifties and wanted to

vaunt into the realm of legendary masters. So he began to

construct a massive sculpture of two pears with beads of dew

clinging precariously to them.

The sculpture was enormous and hovered ominously

above the sculptor’s hometown, held aloof by a massive

infrastructure of struts and beams. In fact, the giant pears

were so significant that they truly wreaked havoc on the

Earth’s rotation, everso slightly, what with a new asteroid-

sized fruit basket clinging to it.

The government sent jets and warcrafts to destroy the statue.

They unleashed a vicious attack on the village, dismantling the

statue, blowing it into thousands of pieces, chipping away at it

with missiles. Soon enough, the statue was obliterated and all

was back to normal.

A huge chunk of the statue had taken orbit in the heavens

and often veered perilously close to the planet. When it did,

it was always met by an arsenal of advanced weaponry, which

further damaged it and deflected its course skyward.

Eventually, this inadvertant meteor was nothing more

than the size of a very daunting man. And, when it at last

hit the ground, weathered and polished by its ninety year

journey, it was hailed as an enigmatic masterpiece, a message

from the great beyond. Here was a stunning likeness of a

male nude looking wistfully into the sky with an intricate

lacework of vines creeping around his waist and covering his

improprieties.

The statue was last sold for fifty-two million dollars and stayed

in the permanent exhibit at the Louvre, with the plaque:

“HEAVENLy NUDE” By ANONyMOUS

sidebar!

why’s (poignant) guide to ruby

113

“You should,” said the rabbit and the eyes shine-shined.

“Although, salivating over a tongue. You don’t salivate over it, do you?”

“I DO!!” and the rabbit got so excited that Sticky Whip shot out of his eyes. (More on Sticky Whip in a later

sidebar. Don’t let me forget. See also: The Purist’s Compendium to Novelty Retinal Cremes by Jory Patrick

Sobgoblin, available wherever animal attachment clips are sold.)

“Okay, you’ve hooked me. I want to hear all about it,” Fox Small declared. “Please, talk freely about the

chimbly. Oh, and Dwemthy. Who is he? What makes him tick? Then maybe, if I’m still around after

that, you can tell me about what makes rabbits tick, and maybe you can hold our hands through this whole

missing truck ordeal. I need consolation more than anything else. I could probably use religion right now. I

could use your personal bravery and this sense of accomplishment you exude. Do you smoke a pipe? Could

be a handy tool to coax along the pontification we must engage in.”

And the rabbit began expounding upon Dwemthy and the legend of Dwemthy and the ways of Dwemthy.

As with most stories of Dwemthy, the rabbit’s tales were mostly embellishments. Smotchkkiss, there are

delicacies which I alone must address.

Please, never ask who Dwemthy is. Obviously he is a mastermind and would never disclose his location or

true identity. He has sired dynasties. He has set living ogres aflame. Horses everywhere smell him at all

times. Most of all, he knows carnal pleasures. And to think that this…

This is his Array.

Dwemthy’s Array

You stand at the entrance of Dwemthy’s Array. You are a rabbit who is about to die. And deep at the end of

the Array:
 class Dragon < Creature

 life 1340 # tough scales
 strength 451 # bristling veins
 charisma 1020 # toothy smile

 weapon 939 # fire breath
 end

A scalding SEETHING LAVA infiltrates the cacauphonous ENGORGED MINESHAFTS deep within

6. Downtown 114

the ageless canopy of the DWEMTHY FOREST… chalky and nocturnal screams from the belly of the

RAVENOUS WILD STORkUPINE... who eats wet goslings RIGHT AFTER they’ve had a few graham

crackers and a midday nap… amidst starved hippos TECHNICALLY ORPHANED but truthfully sheltered

by umbrellas owned jointly by car dealership conglomerates… beneath uncapped vials of mildly pulpy

BLUE ELIXIR... which shall remain… heretofore… UNDISTURBED… DWEMTHy!!!

If you don’t understand Dwemthy’s Array, it is Dwemthy’s fault. He designed the game to complicate our

lives and were it simpler, it would not be the awe-inspiring quest we’ve come to cherish in our arms this

very hour.

Dwemthy’s Array has a winding history of great depth. It is not enough to simply say, “Dwemthy’s Array,”

over and over and expect to build credentials from that act alone. Come with me, I can take you back a

couple years, back to the sixties where it all started with metaprogramming and the dolphins.

You might be inclined to think that metaprogramming is another hacker word and was first overheard in

private phone calls between fax machines. Honest to God, I am here to tell you that it is stranger than that.

Metaprogramming began with taking drugs in the company of dolphins.

In the sixties, a prolific scientist named John C. Lilly began experimenting with his own senses, to uncover

the workings of his body. I can relate to this. I do this frequently when I am standing in the middle of a

road holding a pie or when I am hiding inside a cathedral. I pause to examine my self. This has proven to

be nigh impossible. I have filled three ruled pages with algebraic notation, none of which has explained

anything. The pie, incidentally, has been very easy to express mathematically.

But the scientist Lilly went about his experiments otherwise. He ingested LSD in the company of dolphins.

Often in a dark, woeful isolation tank full of warm salt water. Pretty bleak. But it was science! (Lest you

think him criminal: until 1966, LSD was supplied by Sandoz Laboratories to any interested scientists, free

of charge.)

Drugs, dolphins and deprivation. Which led to Lilly’s foray into things meta. He wrote books on

mental programming, comparing humans and computers. You may choose to ingest any substance you

want during this next quote—most likely you’re reaching for the grain of salt—but I assure you that there’s

no Grateful Dead show on the lawn and no ravers in the basement.

why’s (poignant) guide to ruby

115

When one learns to learn, one is making models,
using symbols, analogizing, making metaphors, in
short, inventing and using language, mathematics,
art, politics, business, etc. At the critical brain
(cortex) size, languages and its consequences
appear. To avoid the necessity of repeating learning
to learn, symbols, metaphors, models each time, I
symbolize the underlying idea in these operations as
metaprogramming.

JOHN C. LILLy, Programming and metaProgramming in
the human biocomPuter, NEW yORk, 1972.

We learn. But first we learn to learn. We setup

programming in our mind which is the pathway to

further programming. (Lilly is largely talking about

programming the brain and the nervous system,

which he collectively called the biocomputer.)

Lilly’s metaprogramming was more about feeding

yourself imagery, reinventing yourself, all that. This

sort of thinking links directly to folks out there who

dabble in shamanism, wave their hands over tarot

cards and wake up early for karate class. I guess you

could say metaprogramming is New Age, but it’s all

settled down recently into a sleeping bag with plain

old nerdiness. (If you got here from a Google search

for “C++ Metaprogramming”, stick around, but I

only ask that you burn those neural pathways that

originally invoked the search. Many thanks.)

Meta itself is spoken of no differently in your

author’s present day.

All sensuous response to reality is an interpretation of
it. Beetles and monkeys clearly interpret their world,
and act on the basis of what they see. Our physical
senses are themselves organs of interpretation. What
distinguishes us from our fellow animals is that we
are able in turn to interpret these interpretations. In
that sense, all human language is meta-language. It
is a second-order reflection on the ‘language’ of our
bodies—of our sensory apparatus.

TERRy EAGLETON, after theory, LONDON, 2003, CH. 3.

To that end, you could say programming itself is

a meta-language. All code speaks the language of

action, of a plan which hasn’t been played yet, but

shortly will. Stage directions for the players inside

sidebar!

Bread Riddles
Question: Can one take five bites from a bread and make the
shape of a bicycle?
Answer: Yes.

Question: Can one rip a bread in half and still fit the bread in
an envelope?
Answer: Yes.

Question: Can one man take a bread and throw it while
another man sits without bread?
Answer: Yes.

Question: Can four breads in a box be explained?
Answer: Yes.

Question: Can a clerical error in my company books be
attributed to bread?
Answer: Yes.

Question: Can dancers break through a scrim of bread?
Answer: Yes.

Question: Can those same dancers, when faced with an
inexplicably different scrim of bread, fail to break through?
Answer: Yes.

Question: Does bread understand my darkest fears and
wildest dreams?
Answer: Yes.

Question: Does bread desire me?
Answer: Yes.

Question: Will bread be invisible to robots?
Answer: Yes.

Question: Can one robot take eight bites on a bread, without
knowing it’s there, and make the shape of a smaller bread?
Answer: Yes.

Question: Should my clerics be equipped with bread?
Answer: Yes.

Question: In relation to bread, will robots each have their own
elephants?
Answer: Yes.

Question: Can one rip a bread in half and not let it ruin one’s
game of dominoes?
Answer: Yes.

Question: Will we always love bread?
Answer: Yes.

Question: Will we have more bread?
Answer: Yes.

Question: Can four breads marry a robot’s elephant?
Answer: Yes.

sidebar!

6. Downtown 116

your machine. I’ve waxed sentimental on this before.

But now we’re advancing our study, venturing into metaprogramming, but don’t sweat it, it’s still just the

Ruby you’ve seen already, which is why Dwemthy feels no qualms thrusting it at you right away. Soon

enough it will be as easy to spot as addition or subtraction. At first it may seem intensely bright, like you’ve

stumbled across your first firefly, which has flown up in your face. Then, it becomes just a little bobbing

light which makes living in Ohio so much nicer.

Metaprogramming is writing code which writes code. But not as M.C. Escher would sketch it. The

program isn’t reaching back around and overwriting itself, nor is the program jumping onto

your screen and wrenching the keyboard from your hands. No, it’s much smaller than that.

Let’s say it’s more like a little orange pill you won at the circus. When you suck on it, the coating wears

away and behind your teeth hatches a massive, floppy sponge brontosaurus. He slides down your tongue

and leaps free, frollicking over the pastures, yelping, “Papa!” And from then on, whenever he freaks out

and attacks a van, well, that van is sparkling clean afterwards.

Now, let’s say someone else puts their little orange pill under the faucet. Not on their tongue, under the

faucet. And this triggers a different catalysm, which births a set of wailing sponge sextuplets. Umbilical

cords and everything. Still very handy for cleaning the van. But an altogether different kind of chamois.

And, one day, these eight will stir Papa to tears when they perform the violin concerto of their lives.

Metaprogramming is packing code into pill-form, such that a slender drop of water could trigger it to

expand. More importantly, you can control the pill’s reaction, so that a brontosaurus is produced, scaly and

lumbering. Or septulets, CERTAINLY. Or seamstresses. Or cat brains. Or dragons.
 class Dragon < Creature
 life 1340 # tough scales

 strength 451 # bristling veins
 charisma 1020 # toothy smile
 weapon 939 # fire breath

 end

This is not metaprogramming yet. Only the pill. The product of metaprogramming. We are pausing,

looking at the beast itself before descending beneath its flesh with a scalpel and microscope.

The Dragon is a class. You’ve seen that many times now. The Dragon is a descendant of the Creature

class.

Now, eyes up. Look at me. The Creature class contains the metaprogramming code. You can write

metaprogramming code which can be used everywhere, throughout Ruby, in Creature or Dragon, in

String or in Object, anywhere. Our example here, since this is the most common form of meta-code,

focuses on metaprogramming inside your own classes only.

Each of the Dragon’s traits are simply class methods. You could also write this as:
 class Dragon < Creature

 life(1340) # tough scales
 strength(451) # bristling veins

why’s (poignant) guide to ruby

117

 charisma(1020) # toothy smile
 weapon(939) # fire breath

 end

Removing the parens removes clutter, so let’s leave them out. Only use parens when you are using several

methods together and you want to be very clear.

Creature Code
Now, with a lateral slice across the diaphragm, we expose the innards of Creature. Save this code into

a file called dwemthy.rb.
 # The guts of life force within Dwemthy’s Array
 class Creature

 # Get a metaclass for this class
 def self.metaclass; class << self; self; end; end

 # Advanced metaprogramming code for nice, clean traits
 def self.traits(*arr)
 return @traits if arr.empty?

 # 1. Set up accessors for each variable
 attr_accessor *arr

 # 2. Add a new class method to for each trait.
 arr.each do |a|

 metaclass.instance_eval do
 define_method(a) do |val|

 @traits ||= {}
 @traits[a] = val

 end
 end
 end

 # 3. For each monster, the `initialize’ method
 # should use the default number for each trait.
 class_eval do

 define_method(:initialize) do
 self.class.traits.each do |k,v|

 instance_variable_set(“@#{k}”, v)
 end
 end
 end

 end

 # Creature attributes are read-only
 traits :life, :strength, :charisma, :weapon

 end

Focus on the closing lines of code, specifically the line where the traits are being set up. All of the code

before that line sets up the traits class method. This bears resemblance to the basic lottery tickets from the

chapter previous.
 class LotteryTicket

 attr_reader :picks, :purchased
 end

Both traits and attr_reader are simply class methods. When attr_reader is used in the LotteryTicket,

metaprogramming kicks in behind the scenes and starts blowing up balloons, creating reader methods for

the instance variables @PICkS and @PURCHASED above.

The code for the traits method is the metaprogramming I’ve been alluding to. Comments in the code reveal

6. Downtown 118

the three stages the method goes through when adding traits.
• The list of traits is passed on to attr_accessor, which builds reader and writer code for instance variables.

One for each trait.
• Class methods are added for each trait. (A life class method is added for a :life trait.) These class methods are

used in the class definition just like you would use traits or attr_accessor. This way, you can specify the trait, along
with the points given for a trait to a certain creature.

• Add an initialize method which sets up a new monster properly, grabbing the right points and POWER UP!
POWER UP! the monster is alive!

The beauty of these three steps is that you’ve taught Ruby how to code monsters for you. So when Ruby

gets to the traits:
 class Creature
 traits :life, :strength, :charisma, :weapon

 end

Ruby fills in the code behind the scenes and transplants a spiny green heart and jumpstarts the body with

a pullcord. Ruby will use the metaprogramming from the Creature class and build out all the various

methods, expanding the traits list like this:
 class Creature

 # 1. set up reader and writer methods
 attr_accessor :life, :strength, :charisma, :weapon

 # 2. add new class methods to use in creature
 def self.life(val)
 @traits ||= {}

 @traits[‘life’] = val
 end

 def self.strength(val)

 @traits ||= {}
 @traits[‘strength’] = val

 end

 def self.charisma(val)
 @traits ||= {}

 @traits[‘charisma’] = val
 end

 def self.weapon(val)

 @traits ||= {}
 @traits[‘weapon’] = val

 end

 # 3. initialize sets the default points for
 # each trait
 def initialize
 self.class.traits.each do |k,v|

 instance_variable_set(“@#{k}”, v)
 end
 end

 end

Now, Ruby will gladly accept this six-line Dragon code, short enough to look nice when printed on playing

cards:
 class Dragon < Creature

 life 1340 # tough scales
 strength 451 # bristling veins
 charisma 1020 # toothy smile

why’s (poignant) guide to ruby

119

 weapon 939 # fire breath
 end

Eval, the Littlest Metaprogrammer
While the metaprogramming code above is just plain Ruby, it can be difficult to follow still. I totally

understand if you’ve come to this point and your eyes are spinning in their sockets and your knees have

locked up. The trickiest parts of the above are the lines which call the methods instance_eval and class_

eval. Just rub some tiger balm on your joints while I talk about eval.

We’ve been talking about metaprogramming. Writing code which writes code. The eval method hangs

out in this alley. The vagrant eval takes code you have stored up in a string and it executes that code.
 drgn = Dragon.new

 # is identical to...
 drgn = eval(“Dragon.new”)
 # or, alternatively...

 eval(“drgn = Dragon.new”)

Here, let’s write a program which has a hole in it. Instead of writing a program which creates a new

Dragon, let’s leave a hole where the Dragon would be.
 print “What monster class have you come to battle? “
 monster_class = gets
 eval(“monster = “ + monster_class + “.new”)

 p monster

The program asks for a monster. If you type in Dragon, then the monster_class variable will contain the

string “Dragon”. Inside the eval, a few strings get added together to make the string “monster = Dragon.

new”. And when the eval executes this string, the monster variable contains a Dragon object. Ready for

battle.

This is great! Now we can leave it up to the player to pick a monster! Of course, we’re trusting the player

to supply a real monster class. If they type in BotanicalWitch and there is no BotanicalWitch class,

they’ll get an exception tossed in their face.

So, in short, eval lets you make up code as you go. Which can be useful and which can be dangerous as well.

The instance_eval and class_eval method used in the metaprogramming for the Creature class are

slightly different from the normal eval. These two special methods run code just like eval does, but they

duck into classes and objects and run the code there.
 # The instance_eval method runs code as if it were run inside an
 # object’s instance method.
 irb> drgn = Dragon.new

 irb> drgn.instance_eval do
 irb> @name = “Tobias”
 irb> end

 irb> drgn.instance_variable_get(“@name”)
 => “Tobias”

 # The class_eval method runs code is if inside a class definition.

 irb> Dragon.class_eval do
 irb> def name; @name; end

 irb> end

6. Downtown 120

 irb> drgn.name
 => “Tobias”

As you can see above, the instance_eval and class_eval methods also can take a code block instead of a

string. Which is just how things are done in Dwemthy’s Array.

Enough Belittling Instruction and Sly Juxtaposition—Where Is
Dwemthy’s Array??
Tread carefully—here is the other half of DWEMTHy’S ARRAy!! Add these lines to dwemthy.rb.
 class Creature

 # This method applies a hit taken during a fight.
 def hit(damage)

 p_up = rand(charisma)
 if p_up % 9 == 7

 @life += p_up / 4
 puts “[#{ self.class } magick powers up #{ p_up }!]”
 end
 @life -= damage

 puts “[#{ self.class } has died.]” if @life <= 0
 end

 # This method takes one turn in a fight.
 def fight(enemy, weapon)
 if life <= 0

 puts “[#{ self.class } is too dead to fight!]”
 return
 end

 # Attack the opponent

 your_hit = rand(strength + weapon)
 puts “[You hit with #{ your_hit } points of damage!]”
 enemy.hit(your_hit)

 # Retaliation
 p enemy
 if enemy.life > 0

 enemy_hit = rand(enemy.strength + enemy.weapon)

 puts “[Your enemy hit with #{ enemy_hit } points of damage!]”
 self.hit(enemy_hit)

 end
 end

 end

 class DwemthysArray < Array

 alias _inspect inspect
 def inspect; “#<#{ self.class }#{ _inspect }>”; end

 def method_missing(meth, *args)
 answer = first.send(meth, *args)

 if first.life <= 0
 shift
 if empty?

 puts “[Whoa. You decimated Dwemthy’s Array!]”
 else
 puts “[Get ready. #{ first.class } has emerged.]”
 end

 end
 answer || 0
 end
 end

why’s (poignant) guide to ruby

121

This code adds two methods to Creature. The hit method which reacts to a hit from another Creature.

And the fight method which lets you place your own blows against that Creature.

When your Creature takes a hit, a bit of defense kicks in and your charisma value is used to generate a

power-up. Don’t ask me to explain the secrets behind this phenomenon. A random number is picked, some

simple math is done, and, if you’re lucky, you get a couple life points. @LIFE += p_up / 4.

Then, the enemy’s blow is landed. @LIFE -= damage. That’s how the Creature#hit method works.

The fight method checks to see if your Creature is alive. Next, a random hit is placed on your opponent.

If your opponent lives through the hit, it gets a chance to strike back. Those are the workings of the

Creature#fight method.

I’ll explain DwemthysArray in a second. I really will. I’m having fun doing it. Let’s stick with hitting and

fighting for now.

Introducing: You.
You may certainly tinker with derivations on this rabbit. But official Dwemthy Paradigms explicitly denote

the code—and the altogether character—inscribed below. Save this as rabbit.rb.
 class Rabbit < Creature
 traits :bombs

 life 10

 strength 2
 charisma 44
 weapon 4
 bombs 3

 # little boomerang
 def ^(enemy)
 fight(enemy, 13)

 end
 # the hero’s sword is unlimited!!
 def /(enemy)
 fight(enemy, rand(4 + ((enemy.life % 10) ** 2)))

 end
 # lettuce will build your strength and extra ruffage
 # will fly in the face of your opponent!!
 def %(enemy)

 lettuce = rand(charisma)
 puts “[Healthy lettuce gives you #{ lettuce } life points!!]”
 @life += lettuce

 fight(enemy, 0)
 end
 # bombs, but you only have three!!

 def *(enemy)
 if @bombs.zero?
 puts “[UHN!! You’re out of bombs!!]”
 return

 end
 @bombs -= 1
 fight(enemy, 86)

 end
 end

You have four weapons. The boomerang. The hero’s sword. The lettuce. And the bombs.

To start off, open up irb and load the libraries we’ve created above.

6. Downtown 122

 irb> require ‘dwemthy’
 irb> require ‘rabbit’

Now, unroll yourself.
 irb> r = Rabbit.new

 irb> r.life
 => 10
 irb> r.strength

 => 2

Good, good.

Rabbit Fights ScubaArgentine!
You cannot just go rushing into Dwemthy’s Array,

unseatbelted and merely perfumed!! You must

advance deliberately through the demonic cotillion.

Or south, through the thickets and labyrinth of coal.

For now, let’s lurk covertly through the milky

residue alongside the aqueducts. And sneak up on

the ScubaArgentine.
 class ScubaArgentine < Creature

 life 46
 strength 35
 charisma 91
 weapon 2

 end

To get the fight started, make sure you’ve created

one of you and one of the ScubaArgentine.
 irb> r = Rabbit.new

 irb> s = ScubaArgentine.new

Now use the little boomerang!
 irb> r ^ s
 [You hit with 2 points of damage!]

 #<ScubaArgentine:0x808c864 @charisma=91,
@strength=35, @life=44, @weapon=2>
 [Your enemy hit with 28 points of damage!]

 [Rabbit has died.]

For crying out loud!! Our sample rabbit died!!

Grim prospects. I can’t ask you to return to the

rabbit kingdom, though. Just pretend like you didn’t

die and make a whole new rabbit.
 irb> r = Rabbit.new

 # attacking with boomerang!
 irb> r ^ s

 # the hero’s sword slashes!

sidebar!

The Shoes Which Lies Are Made
Of
Earlier, I told you that “The Inadvertant Meteor” was

the only story you need to know in order to understand

preeventualism. But, really, all you need to understand

about preeventualism is that it is still in its infancy and any

of its most basic concepts could change.

Which is why I’ve authored a competing story which I believe

uncovers an entirely different and very relevant intellectual

scenario.

There was a guy who had been around the block. And he

wasn’t very old, so he decided to write a biography of his life.

Well, he started to lie in his biography. He made up some

stories. But mostly little stories that were inconsequential.

Filler. Like he had a story about a painting he’d done of a red

background with elephant legs in front.

But he hadn’t ever painted anything of the sort. He further

embellished the story by talking about a pricey auction he’d

snuck into. An auction in New York City where he’d he

overheard his painting go to sale for twenty grand. But that

wasn’t the point of the story. The point was that he could

fold his body to fit under a lid on a banquet tray. People

would raise the lid and they wouldn’t even notice him bracing

himself inside. He didn’t even mention the price his painting

sold at.

Anyway, he really started to like that story (and others like it),

to the point where he started to ignore his friends and family,

instead preferring to watch what his lie self did after the

auction. In his head.

So, then, one day he was shopping and he found a pair of

shoes that had stripey laces. And he grabbed the shoes and

went to the store counter, forcing them in the cashier’s face,

yelling, “Look! Look at these! Look! These are the shoes my

lie self would wear!” And he bought the shoes and put them

on and the whole Earth cracked open and the cash register

popped open and swallowed him up and he was suddenly

elsewhere, in his lie apartment, sitting down to paint dolphin

noses, three of them on a green background.

It was a lot of work, painting all those noses. And he went

broke for a while and had to stoop so low as to filming

abominable snowman NASCAR.

sidebar!

why’s (poignant) guide to ruby

123

 irb> r / s

 # eating lettuce gives you life!
 irb> r % s

 # you have three bombs!

 irb> r * s

Pretty neat looking, wouldn’t you say? The code in rabbit.rb alters a few math symbols which work only

with the Rabbit. Ruby allows you to change the behavior of math operators. After all, math operators

are just methods!
 # the boomerang is normally an XOR operator.
 irb> 1.^(1)
 => 0

 # the hero’s sword normally divides numbers.
 irb> 10./(2)
 => 5

 # the lettuce gives the remainder of a division.
 irb> 10.%(3)
 => 1

 # the bomb is for multiplication.
 irb> 10.*(3)
 => 30

Where it makes sense, you may choose to use math operators on some of your Classes. Ruby uses these

math operators on many of its own classes. Arrays, for example, have a handful of math operators which

you can see in the list of instance methods when you type: ri Array.
 # the plus operator combines two arrays into a single array
 irb> [“D”, “W”, “E”] + [“M”, “T”, “H”, “Y”]

 => [“D”, “W”, “E”, “M”, “T”, “H”, “Y”]

 # minus removes all items in the second array found in the first
 irb> [“D”, “W”, “E”, “M”, “T”, “H”, “Y”] - [“W”, “T”]

 => [“D”, “E”, “M”, “H”, “Y”]

 # the multiplier repeats the elements of an array
 irb> [“D”, “W”] * 3

 => [“D”, “W”, “D”, “W”, “D”, “W”]

You may be wondering: what does this mean for math, though? What if I add the number three to an array?

What if I add a string and a number? How is Ruby going to react?

Please remember these operators are just methods. But, since these operators aren’t readable words, it can

be harder to tell what they do. Use ri. Often you’ll find that the operators are identical to other readable

methods. You can then choose to use the operator or the method. Whichever is clearer to you.
 # divide with an operator method ...
 irb> 10 / 3
 => 3

 # ... or a readable method?
 irb> 10.div 3
 => 3

And that’s how the Rabbit’s sword divides.

6. Downtown 124

The Harsh Realities of Dwemthy’s Array AWAIT YOU TO MASH
YOU!!
Once you’re done playchoking the last guy with his oxygen tube, it’s time to enter The Array. I doubt you

can do it. You left your hatchet at home. And I hope you didn’t use all your bombs on the easy guy.

You have six foes.
 class IndustrialRaverMonkey < Creature
 life 46

 strength 35
 charisma 91
 weapon 2
 end

 class DwarvenAngel < Creature
 life 540
 strength 6

 charisma 144
 weapon 50
 end

 class AssistantViceTentacleAndOmbudsman < Creature

 life 320
 strength 6
 charisma 144
 weapon 50

 end

 class TeethDeer < Creature
 life 655
 strength 192

 charisma 19
 weapon 109
 end

 class IntrepidDecomposedCyclist < Creature

 life 901
 strength 560
 charisma 422
 weapon 105

 end

 class Dragon < Creature
 life 1340 # tough scales

 strength 451 # bristling veins
 charisma 1020 # toothy smile
 weapon 939 # fire breath

 end

These are the living, breathing monstrosities of Dwemthy’s Array. I don’t know how they got there. No one

knows. Actually, I’m guessing the IntrepidDecomposedCyclist rode his ten-speed. But the others:

NO ONE knows.

If it’s really important for you to know, let’s just say the others were born there. Can we move on??

As Dwemthy’s Array gets deeper, the challenge becomes more difficult.
 dwary = DwemthysArray[IndustrialRaverMonkey.new,

 DwarvenAngel.new,
 AssistantViceTentacleAndOmbudsman.new,
 TeethDeer.new,

 IntrepidDecomposedCyclist.new,
 Dragon.new]

why’s (poignant) guide to ruby

125

Fight the Array and the monsters will appear as you go. Godspeed and may you return with harrowing tales

and nary an angel talon piercing through your shoulder.

Start here:
 irb> r % dwary

Oh, and none of this “I’m too young to die” business. I’m sick of that crap. I’m not going to have you

insulting our undead young people. They are our future. After our future is over, that is.

The Making of Dwemthy’s Array
Fast forward to a time when the winds have calmed. The dragon is vanquished. The unwashed masses

bow. We love you. We are loyal to you.

But what is this centipede nibbling in your eardrum? You dig with your finger, but you can’t get him out!

Blasted! It’s that infernal Dwemthy’s Array again. Explain yourself Dwemthy!

Here, I shall unmask the Array itself for you.
 class DwemthysArray < Array

 alias _inspect inspect
 def inspect; “#<#{ self.class }#{ inspect }>”; end

 def method_missing(meth, *args)
 answer = first.send(meth, *args)

 if first.life <= 0
 shift
 if empty?

 puts “[Whoa. You decimated Dwemthy’s Array!]”
 else
 puts “[Get ready. #{ first.class } has emerged.]”
 end

 end
 answer || 0
 end
 end

By now, you’re probably feeling very familiar with inheritance. The DwemthysArray class inherits from

Array and, thus, behaves just like one. For being such a mystery, it’s alarmingly brief, yeah?

So it’s an Array. Filled with monsters. But what does this extra code do?

6. Downtown 126

Inspect
The inspect method isn’t really a necessary part of Dwemthy’s Array. It’s something Dwemthy added as

a courtesy to his guests. (Many call him twisted, many call him austere, but we’d all be ignorant to go

without admiring the footwork he puts in for us.)

Every object in Ruby has an inspect method. It is defined in the Object class, so it trickles down through

the pedigree to every wee child object just born.
 irb> o = Object.new

 => #<Object:0x81d60c0>
 irb> o.inspect
 => “#<Object:0x81d60c0>”

Have you noticed this? Whenever we create an object in irb, this noisy #<Object> verbage stumbles out!

It’s a little name badge for the object. The inspect method creates that name badge. The badge is just a

string.
 irb> class Rabbit

 irb> attr_accessor :slogan
 irb> def initialize s; @slogan = s; end

 irb> def inspect; “#<#{ self.class } says ‘#{ @slogan }’>”; end

 irb> end

 irb> class FakeRabbit < Rabbit
 irb> end

 irb> Rabbit.new “i blow’d the drgn’s face off!!”
 => #<Rabbit says ‘i blow’d the drgn’s face off!!’>
 irb> FakeRabbit.new “Thusly and thusly and thusly...”
 => #<FakeRabbit says ‘Thusly and thusly and thusly...’>

The thing is: is talking back. Every time you run some code in irb, the return value from that code is

inspected. How handy. It’s a little conversation between you and irb. And irb is just reiterating what you’re

saying so you can see it for your self.

You could write your own Ruby prompt very easily:
 loop do
 print “>> “
 puts “=> “ + eval(gets).inspect

 end

This prompt won’t let you write Ruby code longer than a single line. It’s the essence of interactive Ruby,

though. How do you like that? Two of your recently learned concepts have come together in a most

flavorful way. The eval takes the typed code and runs it. The response from eval is then inspected.

Now, as you are fighting monsters in irb, Dwemthy’s Array will be inspected and replying with the monsters

you have left to fight.

why’s (poignant) guide to ruby

127

Method Missing
Don’t you hate it when you yell “Deirdre!” and like ten people answer? That never happens in Ruby. If you

call the deirdre method, only one deirdre method answers. You can’t have two methods named the same. If

you add a second deirdre method, the first one disappears.

You can, however, have a method which answers to many names.
 class NameCaller
 def method_missing(name, *args)

 puts “You’re calling `” + name + “‘ and you say:”
 args.each { |say| puts “ “ + say }

 puts “But no one is there yet.”
 end
 def deirdre(*args)

 puts “Deirdre is right here and you say:”
 args.each { |say| puts “ “ + say }

 puts “And she loves every second of it.”
 puts “(I think she thinks you’re poetic.)”
 end

When you call the method deirdre above, I’m sure you know what will happen. Deirdre will love every

second of it, you and your dazzling poetry.

But what if you call simon?
 irb> NameCaller.new.simon(‘Hello?’, ‘Hello? Simon?’)

 You’re calling `simon’ and you say:
 Hello?

 Hello? Simon?
 But no one is there yet.

Yes, method_missing is like an answering machine, which intercepts your method call. In Dwemthy’s

Array we use call forwarding, so that when you attack the Array, it passes that attack on straight to the first

monster in the Array.
 def method_missing(meth, *args)

 answer = first.send(meth, *args)

 # ... snipped code here ...
 end

See! See! That skinny little method_missing passes the buck!

6. Downtown 128

4. So, Let’s Be Clear: The Porcupine Is Now To The Sea

5. Walking, Walking, Walking, Walking and So Forth
The evening grew dark around the pair of foxes. They had wound their way through alleys packed with

singing possums, and streets where giraffes in rumpled sportscoats bumped past them with their briefcases.

They kept walking.

And now the stores rolled shut their corrugated metal lids. Crickets crawled out from the gutters and

nudged at the loose change.

“Anyway, you must admit he’s a terrible President,” said Fox Small. “Why does President Marcos have a

rabbit as Vice President of the Foxes.”

“The Vice President? The rabbit with the eyebrows?”

“No, the rabbit with the huge sausage lips,” said Fox Small.

But their conversation was abruptly interupted by a freckly cat head which popped from the sky just above

the sidewalk.

why’s (poignant) guide to ruby

129

What is this about?!

Oh, come on. This is rich. More meta.

I’m not going to bother illustrating this discussion Blixy had with the foxes at this point! It’s all a bunch of

conjecture. HOW can they presume to know the landscape of my family drama? I love my sister. For a long

time, I worshipped her. (This is my sister Quil.)

I admit that there was a pretty painful day a few months ago and I kind of freaked out. I was laid out on the

long patio chair by the pool in my mom’s backyard. I had a Dr. Pepper and a bit of german chocolate cake.

I was eating with a kid fork. Everything else was in the dishwasher, that’s all they had. Three prongs.

My mom started talking about Quil. All about how much money she was blowing on pants and purses. A

five-hundred dollar purse. And then she said, “She’s losing it. She sounded totally high on the phone.” (She

nailed it on the head, Quil was smoking dope and loving it.)

So I’d been noticing how observant my mom could be. That’s why, when she said, “I actually think she’s on

cocaine,” I physically stood up and chucked my soda across the yard.

It sailed off into the woods somewhere. We had been talking awhile, so it was dark when the can flew. I

paced a bit. And then I screamed at the top of my lungs.

My uncle Mike was standing there with the glass door open, staring at me. He said something totally

nervous like, “Oh, okay. Well, I’ll—” And the tea in his glass was swishing back and forth, sloshing all over.

He disappeared. He’s not very good at saying things to people. He’s more of a whistler. And resonant.

6. Downtown 130

So, to be completely honest, yes, I got a little mad. I got mad. You know. I dealt with it. Quil calls me

regularly. For some stupid reason, I rarely call her.

Plus, she didn’t end up killing herself. So it’s just not an issue. Who knows if it was real. She just had a lot

of vodka. And she’s little. So it was just scary to see Quil guzzling it down like that. I mean forcing it down.

But why talk about it? It’ll just make her feel like I’m disappointed. Or like I’m a jerk.

Well, I got off track there a bit. Where was I? Blix is basically helping the foxes around, getting them on the

trail of their truck. Yeah, back to all that.

“We can’t squeeze on to this bus,” said the smallest fox.

“Guys, walk on up,” said Blix. “What’s the hold up? Oh, the frogs. Yeah, just squeeze through.” Blixy

pushed from behind.

“Hey,” said the Tall Fox. “I’m crammed on this little step! Somebody move!”

“Did you get through—young fox??” said the cat.

“No,” said Fox Small, “can’t you see? The driver keeps shaking his head and it’s really making me nervous.

I don’t think he wants us on.”

“Go,” said Blix. He stepped down from his step and walked around the bus, peering through the plexiglass

windows. “Well, I don’t know, guys. I dunno. I guess it’s got a lot of frogs.” He pounded on the window.

“Hey! Move over!”

why’s (poignant) guide to ruby

131

And that’s the reality of riding intercity transit in Wixl. It’s terribly competitive. The morning bus is so

crowded that most white collar animals get frogs to hold their seat through the nighttime. For whatever

reason, it works. It’s become this staple of their workflow and their economy.

If you can muster up a bit of imagination, you can see a percent sign as a frog’s slanted face. Got the

picture in your head? Now let me show you frogs that camp out inside strings.
 # The %s format is for placing full strings.
 irb> “Seats are taken by %s and %s.” % [‘a frog’, ‘a frog with teeth’]

 => “Seats are taken by a frog and a frog with teeth.”

 # The %d format is for placing numbers, while the %f format is for
 # floats (decimal numbers).
 irb> frogs = [44, 162.30]

 irb> stats = “Frogs have filled %d seats and paid %f blue crystals.”
 irb> stats % frogs

 => “Frogs have filled 44 seats and paid 162.30 blue crystals.”

 # Formatting is flexible with types, you can pass in strings
 # and format them like numbers.
 irb> frogs = [‘44’, ‘162.30’]

 irb> stats % frogs
 => “Frogs have filled 44 seats and paid 162.30 blue crystals.”

What you are seeing above uses the % method in the String class. This method takes a string and an

array and slurps them in together to create a new string. The items from the list are yanked out (in order)

and placed in their saved seats. It’s the open of the business day and the frogs have done their job.
 # See, here’s the String#% method called like other methods.
 irb> “Please move over, %s.”.%(‘toothless frog’)
 => “Please move over, toothless frog”

 # Now let’s call it the prettier way, with the percent sign

 # right between the string and the array.
 irb> “Here is your 1098 statement for the year, %s.” % [‘teeth frog’]
 => “Here is your 1098 statement for the year, teeth frog.”

This is also available as the Kernel::format method or Kernel::sprintf method. (In the C language, there

is a sprintf method which operates just like this.)
 irb> format “Frogs are piled %d deep and travel at %d mph.”, [5, 56]

 => “Frogs are piled 5 deep and travel at 56 mph.”

For the most part, you’ll only need %s (strings), %d (integer numbers) or %f (float numbers) format

specifiers. The %p placeholder will run inspect on an object.

Yeah, so, frog formatting is really handy for building strings that are assembled from different kinds of data.

You can learn all the various kinds of format specifiers by reading the ri sprintf page. I’m just going to give

you a few quick pointers.

Let’s say you have the array but you want the items to appear in a different order in the string. In such a

situation, you can identify specific items by placing a number (1$ for the first item, 2$ for the second, and so

on) right after the percent sign.
 irb> “This bus has %1$d more stops before %2$d o’clock. That’s %1$d more stops.” % [16, 8]
 => “This bus has 16 more stops before 8 o’clock. That’s 16 more stops.”

The second tip I have for you is that you can allot a certain number of characters for each item, a width.

6. Downtown 132

And if an item is smaller than the width, extra

spaces will be used before the item. To pad it. If the

width is a negative number, the item will be forced

to left and the padding will come after it.
 # Give one item 30 characters of width
 irb> “In the back of the bus: %30s.” % [‘frogs’]

 => “In the back of the bus:
 frogs.”

 # Give one left-justified item 30 characters of
width
 irb> “At the front of the bus: %-30s.” % [‘frogs’]

 => “At the front of the bus: frogs
 .”

Fox Small kept looking up at the bus driver.

Remember, he wouldn’t enter the bus!

“What’s the deal?” said Fox Tall. “Can’t you just get

on and we’ll just stand in the aisle?”

“You really want to get on this bus? That driver

has no hands,” said Fox Small, speaking close

and hushed to Fox Tall, “and all he has, instead of

hands, are sucker cups.”

“So what? You don’t think animals with tentacles

can drive?”

“Well, not only is he going to flub up the steering

wheel but he has all these legs all over the foot

pedals. This is not smart. Let’s get another bus.

Come on.”

“You know, he’s probably been driving like that all

day. Is he really going to start crashing at this point

in his career?”

“Buses do crash,” said Fox Small. “Some do. This

smells crashworthy.”

“Sheer doo-doo!” And Fox Tall yelled to the driver,

“Hey, cabby, how long have you been driving this

bus for?”

The bus driver peered over darkly under his cap and

started to turn toward them, but his tentacles were

stuck to the wheel. He jerked swiftly at his forelegs

and, failing their release, he turned to the wheel and

sidebar!

More From The Chilling Ongoing
Preview of The Scarf Eaters
(from Chapter XII: Thank Heaven for Little Men.)

“Close the door,” Spencer repeated, but Lara’s hand trembled

and she fumbled sloppily at the latch. Her dad hadn’t taught

her to close doors like this one.

“Yes, it’s an unusual door,” said Brent. He walked over and

closed the door for her. Then, he held her hand and looked

into her eyes. His eyes lit up like huge matchsticks that would

be too huge to be practical. “It’s an unusual handle, which

ensures that those who don’t eat scarves stay out.”

“Sit down, everyone,” Spencer demanded, as he bounded

across the room and took command. “I command this

organization,” he stated. “The secret organization of The Scarf

Eaters!”

The torches encircling the room blazed like invincibly huge

matches and the handful of teenagers sat. Except for Spencer

who stood high and mighty, drawing all the oxygen in the

entire room into his nostrils before speaking.

“One of us,” he said, dramatically and invincibly, “is missing!”

The entire room gasped, which also used oxygen. The room

was abuzz. “Who?” “How?” “Who was it?” Nobody knew.

Except for Spencer, who lept across the room and took charge.

“Our dear friend Steve Bridell has been stolen from us,”

announced Spencer in a deafeningly loud voice, as if

thousands of giant matchsticks were struck against a brittle

surface in unison amidst a pile of oxygen. “Steve Bridell. Do

any of you know Steve Bridell?”

The hall was silent.

Spencer continued. “Steve Bridell was an incredible

resource and you all knew him and loved him. He carved

this enormous wooden man we use as our podium.” Spencer

pointed. “He also made the set of wooden cymbals that are

back in our instrument closet right now.”

Some of the audience stood.

“Wait,” instructed Spencer. “Don’t go back there. I’ve already

checked. The cymbals are gone!”

sidebar!

why’s (poignant) guide to ruby

133

focused his energies on milking his glands for some slicker secretions. Bubbles of mucus oozed.

“Let’s get outta here,” said Fox Tall and the two ran off into the street, slamming right into the cat Blix.

“Alright, well, the bus is full,” said Blix. “I don’t know why the driver stopped if he knew the bus was

crammed with hoppers.”

“We’re thinking he was about to crash into us,” said Fox Tall, “and he opened the door to make it look like a

planned route stop.”

“Keep in mind, Blix, we hadn’t really discussed that possibility out loud, so I haven’t had a chance to

formally agree,” said Fox Small. “Nevertheless, it sounds rational to me.”

“I’m thinking all the buses are going to be full like this.” Blix bit his lip, thinking and flicking his eyes about.

“Let’s just—” He pointed down the circuitry of apartment buildings that wound to the south. “But maybe—

” He looked up and surveyed the stars, scratching his head and counting the constellations with very small

poking motions from the tip of his finger.

“Are you getting our bearings from the stars and planets?” asked Fox Small.

Blix didn’t speak, he ducked off to the north through a poorly laid avenue back behind the paint store. But

before we follow them down that service road, Smotchkkiss, I have one more frog for you, perched on a long

lilypad that stretches out to hold anything at all.

 irb> cat = “Blix”
 irb> puts “Does #{ cat } see what’s up? Is #{ cat } aware??”
 => “Does Blix see what’s up? Is Blix aware??”

The little frogs from earlier (%s or %d) were only placeholders for single strings. Saving places in the string.

The lilypads above start with a flower bud, the octothorpe. You’ve also seen it as a pound sign on

telephones. After the flower bud, two leaves form the edges of the lilypad. The leaves are curly braces,

also seen many times before as the crab pincers for a code block.

An empty lilypad “#{}” becomes an empty string ““.

When the lilypad is found in a double-quoted string, Ruby runs any code found in between the two leaves

of the lilypad. The lilypad is lifted out and the result of the code is placed there in the string. This lilypad

swap is called string interpolation.

 irb> fellows = [‘Blix’, ‘Fox Tall’, ‘Fox Small’]

 irb> puts “Let us follow #{ fellows.join ‘ and ‘ } on their journey.”
 => “Let us follow Blix and Fox Tall and Fox Small on their journey.”

The lilypad is very durable and can hold any kind of code inside. Above we are using Array#join, but you

can do anything you like inside. Call object methods, conditional if or case statements, even define classes.

6. Downtown 134

 irb> blix_went = :north
 irb> puts “Blix didn’t speak, he ducked off to the #{ blix_went } through #{
 if blix_went == :north
 ‘a poorly laid avenue behind the paint store’
 elsif blix_went == :south
 ‘the circuitry of apartment buildings’
 else
 ‘... well, who knows where he went.’
 end }. But before we follow them...”
 => “Blix didn’t speak, he ducked off to the north through a poorly laid avenue
 behind the paint store. But before we follow them...”

The foxes followed Blixy off behind the paint store and down the cracked, uneven asphalt. All of the stores

on the dilapidated lane leaned at angles to each other. In some places, slabs of sidewalk jutted up from

the ground, forming a perilous walkway, a disorderly stack of ledges. Almost as if the city planners had

hoped to pay tribute to the techtonic plates. One small drug store had slid below the surface, nearly out of

eyesight.

Truly, it was colorful, though. The paint store had been tossing out old paints directly onto its neighbors.

The shops nearest the paint store were clogged with hundreds of colors, along the windowsills and in the

rain gutters. Yes, on the walls and pavement.

Basically, beginning with the back porch of the paint store, the avenue erupted into a giant incongruous and

poorly-dyed market.

Further down, a dentist’s office was primed with red paint and, over that, a fledgling artist had depicted

a large baby who had fallen through a chimney and arrived in a fireplace full of soot. Crude black strokes

marked the cloud of ashes raised during impact, easily mistaken for thick hair on the child’s arms and back.

The child looked far too young to have much hair, but there they were: rich, blonde curls which toppled

liberally from the child’s head. Under the child’s legs was painted the word BREWSTER.

The same artist had hit the library next store and had hastily slapped together a mural of a green sports

car being pulled from the mud by a team of legless babies tugging with shiny chains. Again, the drastically

blonde curls!

“I need answers,” said the Fox Tall, who had ground to a halt in front of the scenery.

“I’m starting to believe there’s no such thing,” said Fox Small. “Maybe these are the answers.”

“Brewster?” said Fox Tall. He walked nearer to the library and touched the cheek of one of the legless

children who was closer in perspective. The child’s cheek appeared to contain a myriad of jawbones.

Blix was another two houses down, navigating through the askew brickwork, the paved gully that led to

R.K.’s Gorilla Mint, as the metallic sticker on the door read. The building was plastered with miniature

logos for the variety of payment options and identification acceptable at R.K.’s Gorilla Mint. Even the bars

over the window were lined with insurance disclosures and security warnings and seals of government

authorization, as well as addendums to all of these, carbon paper covering stickers covering torn posters

and advertising. And all mingled with paint splashes that intruded wherever they pleased.

why’s (poignant) guide to ruby

135

“I like the way the fresh paper feels against my tongue,” said the gorilla at the counter. His fingers rubbed

quietly against the bills. He drew his face near to the fanned currency and whisked his nose along the pulpy

cash.

“Is R.K. in this evening?” asked Blix.

“R.K. is not,” said the gorilla cashier. He turned to the three travellers and spread his money out on the

counter’s surface, evenly spacing them apart and lining up all the edges neatly. “Now, which one of these do

you think is worth the most?”

The foxes looked over the different bills and Fox Small muttered to himself, “Well, maybe—no, but I’ll bet—

Wait, does one of these have bananas on it? ‘Cause that one—nope, no fruit or rope swings or—Terrible,

this is difficult!” And in a lower voice, “So difficult to read. What does this one say? Symbols or something?

If all these bills have are symbols, it’s going to be impossible for us to figure out which one is of the greatest

value.”

“That’s why I said, ‘Guess.’” The gorilla tapped each bill in order. “See, you’ve got a 1 in 5 chance.”

“Unless the symbols mean something,” said Fox Tall. “Unless we can figure it out.”

“We can figure it out,” said Fox Small.

“No,” said the gorilla. “The symbols are meaningless.”

“Whoever created the money intended some meaning for them,” said Fox Small. “Why use this symbol?”

He pointed to an ampersand printed in dark ink.

“Yeah, we saw you sniffing the money and fantasizing about it back there,” said Fox Tall. “I’ll bet these

symbols mean all kinds of things to you!”

“No, I don’t think so,” said the gorilla.

If I can weigh in at this point, I think the symbols do have meaning. They may not be loaded with meaning,

it may not be oozing out through the cracks, but I’m sure there’s a sliver of meaning.
 irb> $:
 => [“/usr/lib/ruby/site_ruby/1.8”, “/usr/lib/ruby/site_ruby/1.8/i686-linux”, “/usr/lib/ruby/site_ruby”,
 “/usr/lib/ruby/1.8”, “/usr/lib/ruby/1.8/i686-linux”, “.”]

6. Downtown 136

Variables which start with the American cash sign are global variables. They can be seen from anywhere in

the program, from inside any scope. (Dr. Cham used this variable while snooping around The Originals’

computer bay.)

So why does the cash sign followed by a colon represent an array of all directories where Ruby will

search when you try to load a file with require? The cash sign means “global.” But why the colon?

Historically, on many operating systems, a list of directories contains colons which separated each entry. I

like to see the colon as a pair of eyes, scanning the directories for files. We store our lookout list behind the

eyes.

Here’s a few more special global variables:
 irb> $” # The $” variable contains all files which have been loaded with `require’

 => [“irb.rb”, “e2mmap.rb”, “irb/init.rb”, ... “rbconfig.rb”]

 # These files are stored somewhere else, but their code is being used
 # in this program. Much like quoting someone else’s work -- these are the
 # footnotes -- hence the double-quote.

 irb> $0 # The $0 variable contains the running program’s filename.

 => “irb” # A zero can be considered the beginning of a number count.
 # This variable answers the question, “Where did this program begin?”

 irb> $* # The $* variable contains all the arguments passed into a program.

 => [‘--prompt’, ‘simple’]
 # This one is easy to remember, if you remember that Ruby methods
 # also use the asterisk to capture arguments into an array.

 # The $! contains the current exception raised.
 # The exclamation indicates a state of alarm. An exception!
 irb> begin
 irb> raise TypeError, “I don’t believe this information.”
 irb> rescue

 irb> p $!
 irb> end
 => #<TypeError: I don’t believe this information.>

 # The $@ contains the current backtrace, if an exception was raised.
 # The backtrace shows were Ruby was _at_ when the exception fired.
 irb> begin
 irb> raise TypeError, “I don’t believe this information.”
 irb> rescue

 irb> p $@
 irb> end
 => [“(irb):25:in `irb_binding’”, “/usr/lib/ruby/1.8/irb/workspace.rb:52:in `irb_binding’”,
 “/usr/lib/ruby/1.8/irb/workspace.rb:52”]

“I don’t remember you.” Blix looked at the gorilla with great interest. “Are you one of R.K.’s kids or

something?”

“Oh, come on!” said Fox Small, holding up a bill with an exclamation mark on it up to the gorilla’s nose.

“Don’t tell me this means nothing to you! This one is probably really important since it has an exclamation

on it. Maybe it pays for emergency stuff! Hospital bills or something!”

“Yeah, surgery!” said Fox Tall.

The gorilla looked at the foxes with disgust from under the brim of his cap. “No, you’re wrong. You can’t

pay for surgeries with that.”

“But you see our point,” said the small fox. He grabbed some of the other bills. “And you say this bill cannot

why’s (poignant) guide to ruby

137

pay for surgeries? Well that sounds like it has a specific non-surgery-related purpose. Now, the question

mark one. Oh, what would that one be for?”

“Hey, give me those,” the gorilla snatched at the bills over the counter, but his long thumb kept getting in

the way and every time he thought he had grabbed bills, it turned out he had only grabbed his long thumb.

“Hey, hey, look, he’s mad,” said Fox Tall, happily clapping. “I wonder why. Did you notice how mad he

started getting once we mentioned all these interesting meanings? We’re on to you! We figured out

your game so fast!”

“We totally did!” said Fox Small, one of his elbows caught in the grip of the gorilla, the other arm waving

a bill that featured an underscore. “This one’s for buying floor supplies, maybe even big rolls of tile and

linoleum.”

“See,” said Fox Tall, working to pry the gorilla’s fingers free, “we just have to figure out which is more

expensive: surgery or linoleum! This is so easy!”

“NO IT’S NOT!” yelled the gorilla, yanking at the smaller fox and battering the fox with his palms. “YOU

DON’T kNOW ANyTHING ABOUT MONkEy MONEy!! yOU DON’T EVEN HAVE yOUR OWN kINDS

OF MONEy!!”

“We could easily have our own kinds of money!” said Fox Tall, taking the chimp’s hat and tossing it to the

back of the room, where it sailed behind a wall of safety deposit boxes. “And—your hat is outta here!”

“Come on, give him back his bills,” said Blix, waving his arms helplessly from the sidelines. “We could

really use this guy’s help.”

“Stop hitting me!” screamed the littlest fox. “I’ve almost figured out this one with the dots on it!!”

Suddenly, with great precision and without warning, Fox Tall grabbed the monkey’s nose and slammed his

face down against the counter. The pens and inkpads on its surface rattled and “Bam!” said the fox. The

gorilla’s eyes spun sleepily as his arms… then his neck… then his head slithered to the floor behind the

counter.

Here are a few more global variables you might care to use:
 irb> $/ # The $/ is the line separator, it is normally set to \n, which represents _Enter_
 => “\n” # or “end of line”. The slash represents a sword slashing lines in a file.

 # The line separator controls how methods like each_line or readlines breaks up strings.
 irb> “Jeff,Jerry,Jill\nMichael,Mary,Myrtle”.each_line { |names| p names }

 => “Jeff,Jerry,Jill\n”
 => “Michael,Mary,Myrtle”

 # If you change the line separator, you change how many methods work, such as each_line.
 # See what happens when I change the line separator to a comma.
 irb> $/ = ‘,’

 irb> “Jeff,Jerry,Jill\nMichael,Mary,Myrtle”.each_line { |names| p names }

 => “Jeff,”
 => “Jerry,”
 => “Jill\nMichael,”
 => “Mary,”
 => “Myrtle”

 irb> $, # The $, variable is the join separator, used when joining strings with

6. Downtown 138

 => nil # Array#join or Kernel::print. The comma is a common join character.

 # The join separator is normally empty.
 irb> [‘candle’, ‘soup’, ‘mackarel’].join

 => “candlesoupmackarel”
 irb> $, = ‘ * ‘; [‘candle’, ‘soup’, ‘mackarel’].join

 => “candle * soup * mackarel”

 # But, usually, you won’t need the global variable.
 irb> [‘candle’, ‘soup’, ‘mackarel’].join ‘ # ‘

 => “candle # soup # mackarel”

 irb> $; # The $; variable is the split separator, used when splitting strings
 => nil # with String#split.

 # The split separator is normally empty, which means String#split will separate
 # the string where there is whitespace.
 irb> “candle soup\nmackarel”.split
 => [“candle”, “soup”, “mackarel”]

 irb> $; = ‘a’; “candle soup\nmackarel”.split

 => [“c”, “ndle soup\nm”, “ck”, “rel”]

 # But, usually, you won’t need the global variable.
 irb> “candle # soup # mackarel”.split ‘ # ‘
 => [‘candle’, ‘soup’, ‘mackarel’]

Outside the Gorilla Mint, Blix scolded the foxes. “We could have used that guy’s help! If he knows where

R.K. is, we could use his cunning!”

“We don’t need that ape’s money!” said Fox Small. “We can make our own money!”

“We could support electronic wristbands!” said Fox Tall.

“His money is worthless,” said Blix. “It’s gorilla money. It has no value. It’s worse than blue crystals.”

“But it serves a purpose,” said Fox Tall.

“No it doesn’t,” said Fox Small. “He just said it’s worthless.”

“But what about linoleum and surgeries?” said Fox Tall.

“Yeah,” said Fox Small, up at Blix. “What about linoleum and surgeries?”

“If all the hospitals were staffed by gorillas and all the home improvement chains were strictly operated

by gorillas, then—yES —you could buy linoleum and surgeries. But I guarantee that you would have very

sloppy linoleum and very hideous surgeries. I don’t think you’d make it out of that economy alive.”

“So, if R.K. is so cunning,” said Fox Tall, grinning slyly, “why does he print such worthless currency?”

“It’s a cover for other activities,” said Blix. “Besides, if you’re so smart, why did you resort to violently

pounding that poor gorilla?”

“I guess that was a bad play,” said Fox Tall, hanging his head. “My friend here will tell you that I’ve been on

edge all day.”

“And your rage finally reared its fuming snout!” said Fox Small. “You’re finally living up to your goatee.”

why’s (poignant) guide to ruby

139

Down the lanes they travelled, the two foxes oblivious to their direction, but having a good time now that

they had Blix leading the way with such urgency. They lapsed into a careless wandering right behind Blix

and spent their afternoon heckling most of the passersby.

One such target of their ongoing commentary was The Winged Scroll Carriers, pairs of bats that carry

documents which need to be immediately sworn and notarized. There can be no delay, they must go swift,

there is not even time to roll up the scroll, no, they must drop their swiss cheese and be out the door.

These couriers resemble a kind of Ruby construct called delimited types. A long series of characters

comprises the scroll, flanked on each side by a bat bracing its curly wings to hold the scroll together. The

opening bat wears a hat on which is written %w, which identifies the scroll as a set of words.
 irb> bats = %w{The Winged Scroll Carriers}

 => [‘The’, ‘Winged’, ‘Scroll’, ‘Carriers’]

The %w bats and their scroll, when fed into Ruby, emerge as an array of words. This syntax is a shortcut in

case you don’t want to go through the trouble of decorating each word with commas and quotes. You are in

a hurry, too, there can be no delay. You jot out the words between the bats and let Ruby figure out where to

cut.

Other bats, other hats. For instance, the %x hat runs an external program.
 irb> %w{ruby --help}
 => [“ruby”, “--help”]

 irb> %x{ruby --help}
 => “Usage: ruby [switches] [--] [programfile] [arguments] ...”

My favorite is the %Q hat, which can also be written as just %. This acts just like a double-quoted string, but

looks nice when used with strings that run-on for many lines. Like, say you’re adding a new method with

eval.
 m = “bats!”
 eval %{
 def #{ m }

 puts “{“ * 100
 end
 }

Just like a double-quoted string, you can use the string interpolation lilypads inside.

6. Downtown 140

Blixy wagged his head. “Oh, dear me.”

“Egads! My hand is pregnant,” said Fox Tall, watching the little fox embryo slide about in his palm.

“They are good berries, though,” said Blix. “The wine they make from these berries will make ya grow a few

eyeballs in your teeth. But no more than that.”

“Ah, pain!” yelled Fox Small, as his miniature squeezed out through the pores in his scalp. But soon he was

cradling his little self and murmuring lullablies. Nevermore, nevermore, sweetly sang the nightingale.

Winking starlight, sleeping still, whilst perched on a Sycamore stump.

Making duplicates of Ruby objects is no more than a berry’s worth of code.
 irb> tree = [:berry, :berry, :berry]

 => [:berry, :berry, :berry]
 irb> treechild = tree.clone

 => [:berry, :berry, :berry]

The clone method makes an exact copy of a Ruby object. How does this differ from regular assignment?
 irb> tree_charles_william_iii = tree
 => [:berry, :berry, :berry]

Assigning object to variables only creates more nicknames. The above Array can be called tree_charles_

william_iii now. Or the shorter tree. The same object, but different names.

However, a clone is a copy of an object. You can modify it without affecting the original.
 irb> treechild << ‘flower’

 => [:berry, :berry, :berry, ‘flower’]

 irb> tree
 => [:berry, :berry, :berry]

The clone method doesn’t make copies of everything attached to the object, though. In the array above,

only the array is copied, not all the symbols and strings inside.

You may also see the dup method used to copy objects. The dup method makes copies which aren’t as

exact. For example, there are objects in Ruby which are “frozen” and can’t be altered. If you clone the

object, you get an exact copy which is also frozen. If you use dup, you get an unfrozen copy that you can

change if you like.

why’s (poignant) guide to ruby

141

The clone method also copies the metaclass of an object, whereas dup does not.
 irb> o = Object.new

 irb> class << o
 irb> def nevermore; :nevermore; end

 irb> end

 irb> o.clone.nevermore
 => :nevermore

 irb> o.dup.nevermore
 # NoMethodError: undefined method `nevermore’ for #<Object:0xb7d4a484>
 # from (irb):7

You don’t always need to make copies of objects, though, since many methods like collect and gsub and

format make copies for you as part of their work.

Over the hills and down the valleys, they ran through the grass where the Deer of the Smoky Pink Puffing

roam. The sun was obscured by the lumbering pink clouds, emblazened with deer language, tinting the

horizon a gradient of grapefruit and secreting a glow over the meadow. The clouds slid past each other,

some bobbing upwards, destined for Canadian relatives. Others landing a readable distance from a

recipient’s hooves.

“Let’s stop! Please!” yelled Fox Tall. “You can’t expect us to run in this unbreathable fluff!”

“Why are you yelling?” said Blix, as a thin stratus telegram wafted behind his legs. “You don’t need to raise

your voice above a whisper. These long skinny clouds are usually just a mumble or a sigh. They may not

even make it all the way.”

“All that writing on the cloud is deer talk?” said Fox Small.

“Help! Where are you guys?” The taller fox ducked through a stormy tirade comprised of thick, billowing

smoke and sharp wisps. He whirled in every direction, “Somebody yell if you’re there!”

He searched for a fissure in the dense matter, combing forward with his hands. The verbose, angry clouds

responded by prodding him ahead, forcing him into tight corners in their brief pause between sentences.

He landed in a sinkhole and kept his head down as the cascades of smoke surged forward.

“Yeah, deer can read this stuff,” said Blix. “They just face their target and shoot it out of their nostrils. I

once heard of a guy who rode a stag’s love poem.”

6. Downtown 142

“No way,” said Fox Small.

“Yep,” said Blix. “And that guy was me.” Blix

reached over his shoulder and latched onto a spiral

column of smoke that was twisting just above his

head. “You just have to know which clouds are

wimpy and which clouds are grandiloquent.” Blix let

the cloud pull him along and when the cloud banked

upwards, Blix loosed his grip and kept his feet

moving slowly along the ground. “See, here’s a good

one, long like a broom handle. A guy found one once

and it was shaped exactly like a car: windshield,

driver’s side airbag, power steering. Uncanny!”

“And that guy was—”

“It was!” And Blix climbed up atop the long icy

cloud, with its dangling glyphs, and stood proudly,

floating high above the small fox’s pointy shadow.

“Oh, I could do that,” said Fox Small. “Tall and I go

jetskiing all the time. I’ve stood up on my jetski. It’s

just like that.”

Fox Tall dashed through a descending puff,

shattering its sentence, which letters came unglued

and littered the ground with scrambled words, but

he had only succeeded in reaching the depressive

portions of the deer correspondence, which

manifested itself as a dank and opaque mist.

Meanwhile, his smaller counterpart grabbed a

narrow train of smoke that passed under his arm.

He was airborned and yelled, “Tallyho!” But he

held too tightly and the cloud evaporated under his

arm and sent him back down with a short hop.

Since you’re just beginning your use of Ruby, you

may not fully grasp regular expressions (or regexps)

at first. You may even find yourself clipping out

regexps from the Regular Expression Library and

pasting them into your code without having the

foggiest idea why the expression works. Or if it

sidebar!

Steaks ‘n’ Slides
My uncles love waterslides and they also love steakhouses.

They have these waterslide days which are directly followed

by a trip over to Joey’s Steakhouse. I hate Joey’s Steakhouse.

It’s all big, brown shoe meat. Floppy and galoshy. Mixed with

the stench of the uncles’ chlorine.

Pruny fingers on meat slabs is The Revolting.

It’s time for steaks and waterslides to come together in a truly

repugnant manner. My uncles have had steaks and waterslides

their whole lives. The dynasty of steaks and waterslides must

come to a close. I will marry them in ways against nature!

Like this:

• Hand steaks to riders as they board the waterslide. Rider

looks at the lifeguard. Lifeguard says wait. Rider looks

again. The lifeguard pauses. Then. Okay, it’s time. Go,
kid, go! And the look on that kid’s face as he rushes down

the slope, paws full of chuck! Go, kid, go!

• Kids slide on top of steaks. For safety, we’d want the slides

stacked five steaks deep.

• Or, steaks do the sliding. In their own little swim trunks.

• Or, people. With steak swim trunks.

• People and steaks, side-by-side.

• Steaks travelling down waterslides composed of steaks.

• Steaks travelling down waterslides made of people.

• And, of course, people eating steaks, but their tongues

come out as waterslides and they have to push the steaks

up the waterslides. Which is impossible and a lifeguard

has to climb up the waterslide and manually insert the

steak into the esophagus.

• Waterslides eating people and steaks eating people.

• Waterslides and steaks becoming friends after smelling

people on each other’s breath.

• Or, steaks befriending waterslides, but waterslides

not reciprocating. Waterslides become increasingly

despondent and detached, getting into bad crowds and

sinking into political extremity. Steaks make ankle

bracelets out of people and leave them in the waterslides’

trouser pockets, when the trousers are unattended. They

sneak out of the waterslide commune via a huge waterslide

made of steak swim trunks.

• Or, like I said, people with steak swim trunks.

sidebar!

http://regexlib.com/DisplayPatterns.aspx

why’s (poignant) guide to ruby

143

works!
 loop do
 print “Enter your password: “
 password = gets

 if password.match(/^\w{8,15}$/)
 break

 else
 puts “** Bad password! Must be 8 to 15 characters!”
 end
 end

Do you see the unreadable deer language in the example code? The /^\w{8,15)$/ is a regular expression. If

I may translate, the regexp is saying, Please only allow letters, numbers or underscores. No less than eight

and no more than fifteen.

Regular expressions are a mini-language built into Ruby and many other programming languages. I really

shouldn’t say mini, though, since regexps can be twisted and complicated and much more difficult than any

Ruby program.

Using regular expressions is extremely simple. It is like the Deer: making the smoke is an arduous process.

But hooking your elbow around the smoke and driving it to the Weinerschnitzel to get mustard pretzel dogs

is easy.
 irb> “good_password”.match(/^\w{8,15}$/)

 => #<MatchData:0xb7d54218>
 irb> “this_bad_password_too_long”.match(/^\w{8,15}$/)

 => nil

The String#match method is the simplest practical use of regexps. The match method checks to see if the

string meets the rules inside the regexp. A regexp is only useful with strings, to test strings for a series of

conditions. If the conditions are met, a MatchData object is returned. If not, you get nil.

The most basic regular expressions are for performing searches inside strings. Let’s say you’ve got

a big file and you want to search it for a word or phrase. Since a bit of time has passed, let’s search the

Preeventualist’s Losing and Finding Registry again.
 require ‘preeventualist’

 PreEventualist.searchfound(‘truck’) do |page|

 page.each_line do |line|
 puts line if line.match(/truck/)

 end
 end

This isn’t too different from the code we used earlier to search for lines with the word “truck”. Earlier we

used puts line if line[‘truck’], which is actually a simpler way of searching a string, if you’re just looking

for a simple word. The regexp /truck/ is identical. Find the word “truck”. Anywhere in the string.

Uhm, what if truck is capitalized. Truck. What then?
 puts line if line.match(/[Tt][Rr][Uu][Cc][Kk]/i)

The character classes are the sections surrounded by square brackets. Each character class gives a

list of characters which are valid matches for that spot. (The first spot matches either an uppercase T or a

6. Downtown 144

lowercase t. The second spot matches an R or an r. And so on.)

But a simpler way to write it is like this:
 puts line if line.match(/truck/i)

The letter i modifier at the end of the regexp indicates that the search is not case-sensitive. It will match

Truck. And TRUCk. And TrUcK. And other ups and downs.

Oh, and maybe you’re truck is a certain model number. A T-1000. Or a T-2000. You can’t remember. It’s

a T something thousand.
 puts line if line.match(/T-\d000/)

See, deer language. The \d represents a digit. It’s a place holder in the regexp for any type of number. The

regexp will now match T-1000, T-2000, all the way up to T-9000.

Character Classes
\d matches digits can also be written [0-9]
\w matches word characters (letters, numbers and the underscore) can also be written [A-Za-z0-9_]
\s matches whitespace (spaces, tabs, carriage returns, line feeds) a.k.a. [\t\r\n]
\D matches everything but digits a negated set [^\d]
\W matches everything but word chars just like [^\w]
\S matches everything but whitespace also [^\s]
. the period matches everything.

Building a regexp involves chaining these placeholders together to express your search. If you’re looking

for a number, followed by whitespace: /\d\s/. If you’re looking for three numbers in a row: /\d\d\d/. The

opening and closing slashes mark the beginning and end of the regexp.

A search for three numbers in a row can also be written as: /\d{3}/. Immediately following a character

class like \d, you can use a quantifier symbol to mark how many times you want the character class to be

repeat.

Quantifiers
{n} match exactly n times Precisely three numbers in a row is /\d{3}/
{n,} matches n times or more Three or more letters in a row is /[a-z]{3,}/i

{n,n2} matches at least n times but no more

than n2 times

So, /[\d,]{3,9}/ matches between three and nine

characters which are numbers or commas
* the asterisk * is short for {0,} To match a colon, followed by zero or more word

characters: /:\w*/
+ the plus is short for {1,} To match one or more minus or plus signs, use /[-+]+/
? the question mark is short for {0,1} To match three numbers followed by an optional period:

/\d{3}[.]?/

A really common regular expression is for matching phone numbers. American phone numbers (including

an area code) can be matched using the digit character class and the precise quantifiers.

why’s (poignant) guide to ruby

145

 irb> “Call 909-375-4434” =~ /\d{3}-\d{3}-\d{4}/

 => 5
 irb> “The number is (909) 375-4434” =~ /[(]\d{3}[)]\s*\d{3}-\d{4}/

 => 14

This time, instead of using match to search for the expression, the =~ operator was used. This operator

is the match operator, an equals sign followed by a tilde. The tilde is like a bit of smoke coming off

the edge of a smokestack. Remember the deer, the smoke they blow, a cryptic language just like regular

expressions. The smoky tilde points toward the regexp.

The match operator returns a number. The number is the spot in the string where the regular expression

matched. So when the match operator returns 5, it’s saying, “Before the match, there are five characters in

the string.”

If you need to get the full string matched, you can use the special $& global variable if you’re using the

match operator. Or, if you’re using the match method, you can get the full string by converting the

MatchData object to a string.
 # Using =~ and $& together.
 irb> “The number is (909) 375-4434” =~ /[(]\d{3}[)]\s*\d{3}-\d{4}/

 => 14
 irb> $&
 => “(909) 375-4434”

 # Using the MatchData object.

 irb> phone = /[(]\d{3}[)]\s*\d{3}-\d{4}/.match(“The number is (909) 375-4434”)
 => #<MatchData:0xb7d51680>

 irb> phone.to_s
 => “(909) 375-4434”

Most Rubyists prefer the second approach, as it uses an object within a local variable rather than a global

variable. Global variables are kind of sketchy, since they can be easily overwritten. If you run two regular

expressions in a row, the global variable gets overwritten the second time. But with local variables, you can

keep both matches around as long as the variables are named differently.

Other than matching, another common use of regular expression is to do search-and-replace from

within Ruby. You can search for the word “cat” and replace it with the word “banjo.” Sure, you can do that

with strings or regexps.
 irb> song = “I swiped your cat / And I stole your cathodes”
 irb> song.gsub ‘cat’, ‘banjo’

 => “I swiped your banjo / And I stole your banjohodes”

 irb> song.gsub /\bcat\b/, ‘banjo’

 => “I swiped your banjo / And I stole your cathodes”

The gsub method is named for “global substitution.” Notice how in the first example it replaced the word

“cat” and the first three letters of “cathodes.” Strings also have a simple sub method which will substite only

once.

And so this chapter ends, with Blix and the Foxes cruising aloft the solid pink belched from a very

outspoken deer somewhere in those pastures.

6. Downtown 146

6. Just Stopping To Assure You That the Porcupine
Hasn’t Budged

7. I’m Out
One day, back around the time I met Bigelow (that dog who

walked off with the balloons), I came back to my apartment

hauling some board games I’d bought at a garage sale. And

Quil was on my porch. Which stunned me since she’d been

in San Antonio for like three years. She was sleeping in a

sleeping bag on my porch.

She had run out of money to go to art school, so she stayed

at my place for five months or so.

I found this used bunkbed for our place. At night we’d

sit in our beds and read each other stories from our

notebooks. I was writing a book about a kid who’s a

detective and he’s trying to figure out who killed this kid

on his tennis team and all these animals end up helping

him figure it out. She was writing a book about this kid

who puts an ad in the classifieds to get other kids to join his

made-up cult and they end up building a rocket ship. But

during most of her book these kids are lost in the woods

and pretty directionless, which I got a kick out of hearing each night.

Yeah, each night it was poetry or stories or ideas for tricking our neighbors. Our neighbor Justin was a big

fan of Warhammer and he had all these real swords and tunics. We decided to make suits of armor out of

tin foil and go attack his apartment. We started ransacking his apartment and he loved it. So he made his

own suit of armor out of tin foil and we all went to a professional glamour studio and had a quality group

shot taken.

why’s (poignant) guide to ruby

147

I’m not saying my life is any better than yours. I just miss my sister. Life isn’t like that now. We’re

dissolved or something.

I don’t know. I’m confused. Is this growing up? Watching all your feathers come off? And even though

some of those feathers were the most lovely things?

I’m having a hard time telling who stopped it all up. Who stopped loving who? Did I stop caring? Maybe

I only saw her in two-dimensions and I didn’t care to look at the other angles. I only saw planes. Then she

shimmied up the z-axis when I wasn’t looking and I never did the homework to trace the coordinates. A

limb on a geometrical tree and I am insisting on circles.

Blix was right. I’m in so shape to write this book. Goodbye until I can shake this.

6. Downtown 148

why’s (poignant) guide to ruby

149

6. Downtown 150

Enjoy

calm

spaces.

why’s (poignant) guide to ruby

151

7.

When You Wish Upon a Beard

[o]

7. When You Wish Upon a Beard 152

why’s (poignant) guide to ruby

153

7. When You Wish Upon a Beard 154

why’s (poignant) guide to ruby

155

7. When You Wish Upon a Beard 156

why’s (poignant) guide to ruby

157

7. When You Wish Upon a Beard 158

why’s (poignant) guide to ruby

159

7. When You Wish Upon a Beard 160

why’s (poignant) guide to ruby

161

7. When You Wish Upon a Beard 162

why’s (poignant) guide to ruby

163

7. When You Wish Upon a Beard 164

why’s (poignant) guide to ruby

165

7. When You Wish Upon a Beard 166

why’s (poignant) guide to ruby

167

7. When You Wish Upon a Beard 168

why’s (poignant) guide to ruby

169

7. When You Wish Upon a Beard 170

why’s (poignant) guide to ruby

171

7. When You Wish Upon a Beard 172

why’s (poignant) guide to ruby

173

Expansion Pak No. 1.

The Tiger’s Vest (with a Basic
Introduction to Irb)

EPN 1. The Tiger’s Vest 174

Let’s install the very latest Ruby on your computer
so you can follow all the examples in the (Poignant)
Guide and actually do things right now! (Yes,
things!)
• If you are using Microsoft Windows, begin

by downloading the Ruby Installer for Windows.
Running this “one-click” installer will setup Ruby for
you, as well as a tidy pack of useful software, such as a
small text editor and some additional libraries.

• If you are on Apple’s Mac OS X, then Ruby might
already be installed. Versions 10.2 and 10.3 of OS
X both came with Ruby. Still, I encourage you to
upgrade Ruby so that all the examples in this book
will work for you. Download a stable disk image. You
will need OS X 10.3 (Panther) and the XCode Tools in
order to use this image.

• On FreeBSD, Ruby is right there in the ports system.
In fact, if you’ve used the essential portupgrade tool,
then Ruby is already installed. Akinori Musha, one
of Ruby’s immensely talented core developers, wrote
portupgrade, which means that you can use your Ruby
learning right away to hack up your pkgtools.conf.

 cd /usr/ports/lang/ruby18
 sudo make install

• On RedHat or Mandrake Linux, you can find
Ruby RPMs. I believe Ruby is also available through
Ximian’s Red Carpet.

• On Debian, use apt-getinstallruby.
• On Gentoo, emergeruby.
• Other Linux and UNIX platforms, even OS X (if the

disk images don’t work for you): Download the latest
source code. For instance, Ruby 1.8.2. To unpack and
compile:

 tar xzvf ruby-1.8.2.tar.gz
 cd ruby-1.8.2
 ./configure
 make
 make install

(Again, the above commands are for installing Ruby
from the source code. You may need to use su or sudo
to give you permission to run the makeinstall.)

To test if Ruby is installed, open a command shell
and run: ruby -v. If Ruby is installed properly,
you’ll see a bit of version info.
 ruby 1.8.2 (2004-12-25) [i386-mswin32]

• To open a command shell in Microsoft Windows,
go to the Start Menu and select Run.... Type in: cmd.
Press OK. A command shell window will appear.

• To open a command shell on Mac OS X, go to
Applications > Utilities. Run the Terminal
program.

sidebar!

About Ruby Versions
If you’ve visited any sites which offer Ruby for download,

you’ve probably seen a number of different versions of Ruby

available. Obviously, the greater the version number, the

more recent the version of Ruby. But that’s not exactly true.

Version numbers have meaning in Rubyland and I’d like you

to make an educated choice.

1.8.2 is the latest stable version of Ruby. Stable versions

offer the latest features which have been widely tested and

are recommended for general use. When new stable versions

come out, you can safely upgrade to these new versions.

1.9.0 is the latest development release of Ruby. The

development release includes experimental changes to Ruby

and unfixed problems. This release is for anyone who wants

take a peep into the future of Ruby at the risk of encountering

some bugs.

Now, you’ll notice that the version number is comprised of

three individual numbers, which are: the major version,

the minor version, and the teeny version. The major

version counts each complete rewrite of Ruby. The minor

version is changed based on sweeping changes to Ruby. The

teeny version is incremented every few months as smaller

changes and bug fixes are brought in.

All editions of Ruby thus far have a major version of 1. When

Ruby2 comes along, you’ll see this notch up one.

The minor version indicates whether a version is stable or

not. If the minor version is an even number, then that

version of Ruby is stable. If it’s odd, then that Ruby

is a development version. After a year or so, when the

development version is ready for the world, both numbers are

increased and the teeny version is returned to zero.

Oh, and if I could give you a taste of how smoothly Ruby

moves along! I can’t count how often a fresh idea lands on the

Ruby-Core mailing list, where the Emperors of Ruby converse,

and that same idea gets worked into Ruby within a few

days. It is a lovely machine says I.

sidebar!

http://rubyforge.org/frs/?group_id=167
http://homepage.mac.com/discord/Ruby/
http://rpmfind.net/linux/rpm2html/search.php?query=Ruby
http://ruby-lang.org/en/20020102.html
http://ruby-lang.org/en/20020102.html

why’s (poignant) guide to ruby

175

Okay, keep that command shell open cause we’ll need it if the Earth gets rescued from its plummet toward

the sun.

EPN 1. The Tiger’s Vest 176

Ruby comes with a very, very, very extremely helpful tool called Irb. Interactive Ruby. In your command

shell, type: irb.
 irb(main):001:0>

You should see the prompt above. This Irb prompt will allow you to enter Ruby code and, upon pressing

Enter, the code will run.

So, at the Irb prompt, do a: 3000 + 500.
 irb(main):001:0> 3000 + 500
 => 3500

 irb(main):002:0>

The example 3000 + 500 is legitimate code. We’re just not assigning the answer to a variable. Which is

okay in Irb, because Irb prints the answer given back by code you run.

Irb is a great calculator.
 irb(main):002:0> ((220.00 + 34.15) * 1.08) / 12

 => 22.8735
 irb(main):003:0> “1011010”.to_i(2)

 => 90
 irb(main):004:0> Time.now - Time.local(2003, “Jul”, 31, 8, 10, 0)

 => 31119052.510118

The first example demonstrates a bit of math and is read as: 220.00 plus 34.15 times 1.08 divided by

12. The second example takes a binary string and converts it to a decimal number. The third example

computes the number of seconds between now and July 31, 2003 at 8:10 AM. The answers to all of these

are printed back to us by Irb with a little ASCII arrow pointing.

Reading the Prompt
I know the prompt surely looks bewildering. Well, let’s not delay in dissecting it. It’s very simple. The

prompt has three parts, each separated by colons.

The first section, which reads irb(main), shows the name of the program we are running. The second

section shows a line number, a count of how many lines of Ruby we’ve typed. The third section

is a depth level. Whenever you open a statement which needs closing, the depth level will increase by

one. And whenever Irb senses that your code is unfinished, the end of the prompt will become an

asterisk.
 irb(main):001:0> bell = :pressed
 => :pressed

 irb(main):002:0> ice_gun =
 irb(main):003:0* if bell == :pressed

 irb(main):004:1> :on
 irb(main):005:1> else

 irb(main):006:1* :off
 irb(main):007:1> end

 => :on

Notice how the depth level increased to 1 when I opened the if statement. And how the asterisk indicates

why’s (poignant) guide to ruby

177

the continuation of a line.

Tweaking the Prompt
You don’t have to like the prompt’s appearance, though. I’m not forcing you to do anything and, if you want

to hack it up, I’m right here beside you.

Irb has a few other included prompts which may better appease your senses. Try irb --prompt simple.

This time Irb will treat you to a very basic set of arrows, allowing you to enter your code without the whole

status report.
 >> %w(my best friend’s arm)
 => [“my”, “best”, “friend’s”, “arm”]

 >>

Ruby comes with a few prompts. The simple prompt seen above. The xmp prompt which has no prompt

at all and indents the answer arrow. (It’s supposed to look nice for printing.) Also, the null prompt, which

eliminates prompts altogether. Set the prompt by just supplying the name with the --prompt option. (So,

irb --prompt null.)

Making your own prompt is okay as well. Irb is completely customizable from inside of itself. The conf

object contaions all of Irb’s configuration settings. Some of these configuration settings are for controlling

the prompt.
 >> conf.methods.grep /prompt/

 => [“prompting?”, “prompt_s”, “prompt_s=”, “prompt_c”, “prompt_c=”,
 “prompt_i”, “prompt_mode”, “prompt_i=”, “prompt_mode=”]

Let’s setup our prompt to display line numbers with just a bit of decor.
 >> conf.prompt_i = “%3n :> “ # the normal prompt

 >> conf.prompt_s = “%3n .%l “ # the string continuation prompt
 >> conf.prompt_c = “%3n .^ “ # the code continuation prompt

 >> conf.return_format = “ => %s\n” # the answer arrow

Above are the four parts to an Irb prompt. The string continuation prompt is displayed when a string is still

open when you hit Enter. The %3n describes that Irb

should reserve three characters for the line number.

The %l saves a place for displaying the type of string

being continued. (If you’re continuing a double-

quoted string, it shows a double quote. If you’re

continuing a regular expression, it shows a slash.)

The rest are little symbols to decorate the prompt.

So, in the case of a continuing code line, I show a

caret which points up to the line where that line of

code started.

You can read more about customizing Irb and saving

sidebar!

Windows Hiccups
Okay, here’s what you do to get tab completion working in
Windows. Download this. A zip with two files inside. These
get copied into your Ruby installation. Place readline.dll in the
bin folder. The readline.so goes in:
lib/ruby/1.8/i386-mswin32 folder.

Then, run in your command shell: irb --readline -r irb/
completion.

And for Europeans, you’ll need this. Save it as .inputrc and
place it in your home directory. (Your personal directory
which contains your Desktop and My Documents folders.)

sidebar!

http://whytheluckystiff.net/ruby/dist/readline.so-for-1.8.zip
http://whytheluckystiff.net/ruby/dist/Input.euro

EPN 1. The Tiger’s Vest 178

your configuration to a file in the complete guide to Irb, available in the free-for-your-wandering-Internet-

eyes Programming Ruby.

Tab Completion
One feature of Irb which is rarely mentioned is its beneficial tab completion. And it’s a bit of a taboo topic

at the moment, since getting it to work on Windows is a slight horror. (No, don’t be afraid. All at once now,

look to your right.)

If you’re on Linux or FreeBSD, the tab completion should work right off. And if you’re using OS X, you

should be sure you’re upgrade to the latest 1.8 and when run Irb, use:
 irb --readline -r irb/completion

Basically, when you hit Tab, Irb will take a guess at what you’re trying to type. Try typing: [].col and hit Tab.

Irb will finish it. [].collect and it leaves your cursor at the end so you can add further.

If there are several matches, just hitting Tab will do nothing. But hit it twice and Ruby will give you a

complete list of possible matches.

This is great if you just want to see all the methods for a certain object. Type in any number, a dot, and use

Tab.
 >> 42.
 42.floor 42.next 42.step
 42.__id__ 42.freeze 42.nil? 42.succ
 42.__send__ 42.frozen? 42.nonzero? 42.taint
 42.abs 42.hash 42.object_id 42.tainted?
 42.between? 42.id 42.prec 42.times
 42.ceil 42.id2name 42.prec_f 42.to_f
 42.chr 42.inspect 42.prec_i 42.to_i
 42.class 42.instance_eval 42.private_methods 42.to_int
 42.clone 42.instance_of? 42.protected_methods 42.to_s
 42.coerce 42.instance_variable_get 42.public_methods 42.to_sym
 42.display 42.instance_variable_set 42.quo 42.truncate
 42.div 42.instance_variables 42.remainder 42.type
 42.divmod 42.integer? 42.respond_to? 42.untaint
 42.downto 42.is_a? 42.round 42.upto
 42.dup 42.kind_of? 42.send 42.zero?
 42.eql? 42.method 42.singleton_method_added
 42.equal? 42.methods 42.singleton_methods
 42.extend 42.modulo 42.size

Now, trying typing Kernel:: and then Tab. All the core methods. Don’t ever forget this and use it all the

time.

why’s (poignant) guide to ruby

179

Okay, one last thing and then I’ll quit bugging you with all this great technology. But I have to say it loud,

so take cover! I’m across the world here, folks, but the volume comes down from the sky—a bold, red

crescendo of—

((ri))
(Ruby’s Own 411 or 555-1212 or Yes, Operator, Get Belgrade on the

Line—I’ll Be Right Here—Just Plain Hammering The Pound Key
Until Someone Picks Up…)

And Ri picks up the line. “This is Ri. Class and colon, please.”

You rush in, “This is an instance method, Operator. Enumerable#zip.”
 ri Enumerable#zip

Without delay, right up on your teletype display (so swiftly that even the cat perched atop cranes his neck

around, gapes and hands it the royal cup Most Blatantly Great Thing Since Michael Dorn):
 --- Enumerable#zip
 enum.zip(arg, ...) => array
 enum.zip(arg, ...) {|arr| block } => nil
 --
 Converts any arguments to arrays, then merges elements of _enum_
 with corresponding elements from each argument. This generates a
 sequence of +enum#size+ _n_-element arrays, where _n_ is one more
 that the count of arguments. If the size of any argument is less
 than +enum#size+, +nil+ values are supplied. If a block given, it
 is invoked for each output array, otherwise an array of arrays is
 returned.

 a = [4, 5, 6]
 b = [7, 8, 9]

 (1..3).zip(a, b) #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
 “cat\ndog”.zip([1]) #=> [[“cat\n”, 1], [“dog”, nil]]
 (1..3).zip #=> [[1], [2], [3]]

EPN 1. The Tiger’s Vest 180

It’s an unabridged Ruby dictionary servo—the Power of Just Asking is at your fingertips—don’t tell me

you’ve never heard of this no-money-down lifetime-supply-of-proper-explanations!

To get an explanation of any class, along with a complete directory to all of its methods, all in a very

soothing voice fit for calming any of you panicking cosmonauts out there fighting the pull of some zero-

tolerance tractor beam, just use at your command shell: ri Class.

But for help on class methods, you cuff on: ri Class::method.

Though instance methods use a pound key rather than a dot. (Since the dot can mean class or instance

methods.) I mean: ri Class#method.

The full spread of classes, a full list from the Very Top down to the Earth’s core, can be achieved with ri -c.

And beyond text, you can make HTML: ri -Tf html String#gsub > gsub.html.

Or show colory ANSI: ri -Tf ansi String#gsub. And this is last and best.

Into the Ri Switchboard
Behind Ri sings a chorus of human voices, primarily Dave Thomas, an author of Programming Ruby, and

absolutely the American foster parent of Ruby. Many of these elaborate spiels from Ri are straight from the

references of Programming Ruby. Don’t forget to thank Dave periodically.

Ri culls its lush information set from the very code that Ruby is built from. In each of the files of code back

in the Ruby Headquarter’s file cabinet, detailed comments describe everything in sight.

In Ruby’s date class, here we have such commented methods:
 # Get the time of this date as [hours, minutes, seconds,

 # fraction_of_a_second]
 def time() self.class.day_fraction_to_time(day_fraction) end

 # Get the hour of this date.
 def hour() time[0] end

 # Get the minute of this date.
 def min() time[1] end

The comments show up in Ri. We type: ri Date#time.
 -- Date#time
 time()
 --
 Get the time of this date as [hours, minutes, seconds,
 fraction_of_a_second]

Ri figures out much of how a method works, although it expects coders to write a brief description in the

comments just before a method or class definition. I would suggest that whenever you write a method, add a

brief description in the comments before that method. In time, you can generate Ri documentation for that

method.

You can also use a few special characters to enhance your description. For example, if you indent a

paragraph and use an asterisk * or a dash - just before the letters of the first sentence, the paragraph will be

recognized as a list item. Then, if your description needs to be converted to HTML, you’ll see the list item

why’s (poignant) guide to ruby

181

appear as an HTML unordered list.
 # Get the time of this date as an Array of:
 # * hours
 # * minutes
 # * seconds
 # * fraction_of_a_second

 def time() self.class.day_fraction_to_time(day_fraction) end

Other rules as well: Lists which start with digits followed by periods are recognized as numbered lists.

Emphasized words are surrounded by underscores, bold words by asterisks, code words by plus signs.

Examples are simply blocks of text indented a few spaces. All of these rules together are called RDoc.

Here’s a bit of RDoc from the initialize method in one of my projects called RedCloth. Notice the indented

example as well as the Ruby class and method names flanked with plusses.
 #

 # Returns a new RedCloth object, based on +String+ and
 # enforcing all the included +restrictions+.
 #
 # r = RedCloth.new(“h1. A bold man”, [:filter_html])

 # r.to_html
 # #=>”<h1>A &lt;b&gt;bold&lt;/b&gt; man</h1>”
 #

 def initialize(string, restrictions = [])
 @lite = false

 restrictions.each { |r| method(“#{ r }=”).call(true) }

 super(string)
 end

For the full set of RDoc rules see the Markup section of the README.

Pushing Out Your Own Ri
Ri doesn’t automatically read your files for you, though. You’ve got to push it along, show it the way.

Change to the directory of the code you’d like to scan. Then, use the RDoc tool to make it happen.
 cd ~/cvs/your-code
 rdoc --ri-site

Now, try using ri YourClass to ensure all your descriptions are showing up properly. If you want to make

HTML documentation, try this:
 cd ~/cvs/your-code
 rdoc

The ~/cvs/your-code directory should now also have a fresh doc directory containing HTML documentation

for all of your classes. View index.html for the pleasant news.

Well then. Your hands are in it all now. Welcome to Ruby.

http://rdoc.sourceforge.net/doc/files/README.html

EPN 1. The Tiger’s Vest 182

why’s (poignant) guide to ruby

183

Colophon
This Colophon (or ‘the bit where we tell you the stuff that went on behind the scenes’) refers to the pdf

presentation of “why’s (poignant) guide to ruby” you are currently enjoying.

The source documentation and images are copyright why the lucky stiff, released under an Attribution

ShareAlike Creative Commons license.

This presentation is optimised for viewing on-screen and double-sided printing on an A4 printer that can

print edge-to-edge. The design strongly echoes that of the original web presentation, with some minor

alterations to reflect a page-by-page presentation. The font is Georgia.

Html and images were the core source materials. Html files were stripped to body elements with an xml

header, before being whisked away through an XSLT transform to create a XML / HTML / formatting

code mash-up. Add to the mix a sculpted Adobe InDesign CS template, with tag-to-style mapping and the

body of each chapter was imported quickly. Hey, I’m a document DJ! Most XML elements were mapped

to similar styles. All images were imported and scaled manually, and all links etc recreated by hand. The

index was also created within InDesign.

This pdf brought to you by Nij at kebabShopBlues; with all respect to the writings and drawings of why - the

lucky talented stiff.

3rd Party Modules

[0]

http://whytheluckystiff.net/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/
http://www.kebabShopBlues.co.uk

3rd Party Modules 184

A Tenuous Index
Symbols
_. See Numbers; See also Variables
- 21
:. See Symbols
::. See Class Methods
‘ 38
“ 38
{} 133
@. See Instance Variables
@@. See Class variables
#. See comments
% 131
+ 21
<. See inheritance
<< 41. See also concatenate
== 34, 35, 51
=== 51
=>. See Hash (dictionary)
=~ 145
| 19
$. See Global Variables
$, 137
$; 138
$: 136
$! 136
$* 136
$/ 137
$0 136
%d (integer numbers) 131
%f (float numbers) 131
\ (line continuation) 50
.. (or ...). See Ranges
%Q 139
%s (strings) 131
%w 139
%x 139

A
alias 21, 120, 125
allocate 61
Arguments

Block Arguments 19, 45
Method Arguments 16

array 22, 44
Arrays 20, 39, 45, 77, 123
attribute 56. See also Instance Variables

B
backtrace 66
BanquetRoom 157
block arguments. See Arguments
blocks 18, 44, 109
block variable 23
break 47

C
capitalize 11
case 50, 51
Chunky Bacon 15, 16, 17, 84, 153
Class 78
class definition 56
Class Methods 17
Class variables 18, 71
clone 140
collect 58, 72, 141
comments 39
commercial uses 12
concatenate 35
constants 15, 23, 62

D
DeCody 167
def 50, 51
delimited types 139
dictionary. See Hash (dictionary)
Dir 41
dup 68, 140

E
each 39, 47, 72
Eagleton, Terry 115
elsif 36, 51
encapsulate 110
equality. See ==
Escher, M.C. 116
eval 119, 126
exceptions 66
exit 11, 22
extend 79

F
False 33
Files 108
format 131, 141. See also Kernel:Format
freeze 61

G
gate (comment character). See comments
gets 37
Global Variables 17, 53, 136
gsub 39, 141

H
Hash 20, 38, 39
hash (comment character). See comments
Hash (dictionary) 44

I
if 33, 35, 51
index 38, 69, 108
inheritance 77

why’s (poignant) guide to ruby

185

initialize 56, 58
inspect 126
install 174
Instance Variables 18, 56
Interactive Ruby. See irb
irb 61, 126, 176
iterator 108

K
Kernel 78
key 38
Keywords 21

L
language 10
library 110
Lilly, John C. 114
LSD 114

M
match 143, 145
metaprogramming 114, 118
method 61, 109
Methods 16
module 78, 110

N
new 56
next 46
nil 32, 143
Numbers 14

O
Object 78, 126
open 40, 108
Operators 21, 123

P
pound (comment character). See comments
print 11, 22, 40

R
raise 69
rand 56
Ranges 19, 50, 51
read 108
regexp. See Regular Expressions
Regular Expressions 21, 69, 142, 143, 145
require 23, 58, 136
reverse 37, 155, 158
ri 179
Ruby Versions 174
run an external program 139

S
scope 53, 54, 56
self 71
send 155
shift 109
sort_by 45
sprintf 131
Strings 14, 108
strip 40
Symbols 15

T
The Consistent Reminder 63
The Scarf Eaters 29, 43, 68, 132
times 22
tr 158
translate. See tr
True 34

U
umop_apisdn 158
undefined. See nil
underscores (in numbers) 14
unless 11, 33, 35

V
value (in a Hash) 38
Variables 13

W
when 50, 51
while 66

Y
yield 109

Z
Zen 24

3rd Party Modules 186

It's Over Already!

That’s why there’s nothing

on this page.

